Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T11:37:50.841Z Has data issue: false hasContentIssue false

The effect of cold exposure of sheep on digestion, rumen turnover time and efficiency of microbial synthesis

Published online by Cambridge University Press:  10 January 2017

P. M. Kennedy
Affiliation:
Department of Animal Science, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
R. J. Christopherson
Affiliation:
Department of Animal Science, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
L. P. Milligan
Affiliation:
Department of Animal Science, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Six closely shorn sheep were given brome grass (Bromus inermis) pellets at 1 h intervals and maintained at ambient temperatures of −1 to 1° and 18–21° for 28 d. Measurements of digestion were made during the last 10 d of temperature exposure.

2. Cold exposure resulted in a reduction in apparent dry matter (DM) digestibility from 0·482 to 0·450, and of apparent digestibility of organic matter (OM) from 0·511 to 0·477. Neither apparent digestibility nor retention of nitrogen was affected.

3. Apparent digestibility of OM in the rumen decreased from 0·300 to 0·242 with cold exposure, and was highly correlated with turnover time in the rumen of 108Ru, which was used as a particulate marker.

4. The efficiency of microbial synthesis (g N incorporated into microbial cells/kg OM apparently digested) was correlated with the dilution rate of the solute marker (51Cr) and with the turnover time of the particulate marker (103Ru) in the rumen.

5. Digestion in the intestine of DM and OM accounted for significantly more of apparent digestion in the whole gastrointestinal tract for sheep kept in the cold than for sheep kept in the warm. The apparent digestibilities of DM and OM entering the intestines were similar in sheep on both treatments, but significantly more non-ammonia-N was digested in the intestines of cold-exposed sheep.

6. The influence of dilution rate of rumen fluid on the efficiency of synthesis of microbial cells in the rumen is discussed.

Type
Papers on General Nutrition
Copyright
Copyright © The Authors 1976

References

Abe, M. & Kandatsu, M. (1969). Jap. J. zootech. Sci. 40, 313.Google Scholar
Association of Official Analytical Chemists (1975). Official Methods of Analysis, 12th ed. Washington, DC: Association of Official Analytical Chemists.Google Scholar
Bailey, C. B., Hironaka, R. & Sien, S. B. (1962). Can. J. Anim. Sci. 42, 1.CrossRefGoogle Scholar
Beever, D. E., Coelho da Silva, J. F., Prescott, J. H. D. & Armstrong, D. G. (1972). Br. J. Nutr. 28, 347.CrossRefGoogle Scholar
Beever, D. E., Harrison, D. G., Thomson, D. J., Cammell, S. B. & Osbourn, D. F. (1974). Br. J. Nutr. 32, 99.CrossRefGoogle Scholar
Bird, P. R. & Fountain, R. D. (1970). Analyst, Lond. 95, 98.CrossRefGoogle Scholar
Briggs, P. K., Hogan, J. P. & Reid, R. L. (1957). Aust.J. agric. Res. 8, 674.CrossRefGoogle Scholar
Bruno, G. A. & Christian, J. E. (1961). Analyt. Chem. 33, 650.CrossRefGoogle Scholar
Christiansen, W. C., Woods, W. & Burroughs, W. (1964). J. Anim. Sci. 23, 984.CrossRefGoogle Scholar
Christopherson, R. J. (1976). Can. J. Anim. Sci. 56. (In the Press.)CrossRefGoogle Scholar
Coelho da Silva, J. F., Seeley, R. C., Beever, D. E., Prescott, J. H. D. & Armstrong, D. G. (1972 a). Br. J. Nutr. 28, 357.CrossRefGoogle Scholar
Coelho da Silva, J. F., Seeley, R. C., Thomson, D. J., Beever, D. E. & Armstrong, D. G. (1972 b). Br. J. Nutr. 28, 43.CrossRefGoogle Scholar
Cunningham, M. D., Martz, F. A. R. & Merilan, C. P. (1964). J. Dairy Sci. 47, 382.CrossRefGoogle Scholar
Downes, A. M. & McDonald, I. W. (1964). Br. J. Nutr. 18, 153.CrossRefGoogle Scholar
Egan, A. R. (1974). Aust. J. agric. Res. 25, 613.CrossRefGoogle Scholar
Faichney, G. J. (1975 a). Aust.J. agric. Res. 26, 319.CrossRefGoogle Scholar
Faichney, G. J. (1975 b). In Digestion and Metabolism in Ruminants [McDonald, I. W. and Warner, A. C. I., editors]. Armidale NSW, Australia: University of New England Publishing Unit.Google Scholar
Fuller, M. F. & Cadenhead, A. (1969). In Energy Metabolism of Farm Animals [Blaxter, K. L., Kielanowski, J. and Thorbeck, G., editors]. Newcastle upon Tyne: Oriel Press.Google Scholar
Graham, N. Mc. (1964). Aust.J. agric. Res. 15, 113.Google Scholar
Graham, N. Mc., Wainman, F. W., Blaxter, K. L. & Armstrong, D. G. (1959). J. agric. Sci., Camb. 52, 13.CrossRefGoogle Scholar
Harrison, D. G., Beever, D. E., Thomson, D. J. & Osbourn, D. F. (1975). J. agric. Sci., Camb. 85, 93.CrossRefGoogle Scholar
Hemsley, J. A., Hogan, J. P. & Weston, R. H. (1975). Aust.J. agric. Res. 26, 709.CrossRefGoogle Scholar
Hobson, P. N. (1965). J. gen. Microbiol. 38, 167.CrossRefGoogle Scholar
Hodgson, J. C. & Thomas, P. C. (1975). Br. J. Nutr. 33, 447.CrossRefGoogle Scholar
Hogan, J. P. & Weston, R. H. (1970). In Physiology of Digestion and Metabolism in the Ruminant [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Hume, I. D. (1970). Aust. J. agric. Res. 21, 297.CrossRefGoogle Scholar
Hume, I. D. (1974). Aust.J. agric. Res. 25, 155.CrossRefGoogle Scholar
Hungate, R. E. (1968). In Handbook of Physiology, vol. 5, ch. 130 [Code, C. F., editor]. Washington, DC: American Physiological Society.Google Scholar
Ishaque, M., Thomas, P. C. & Rook, J. A. F. (1971). Nature New Biol. 231, 253.CrossRefGoogle Scholar
Levin, R. J. (1969). J. Endocr. 45, 315.CrossRefGoogle Scholar
McNaught, M. L., Owen, E. C., Henry, K. M. & Kon, S. K. (1954). Biochem J. 56, 151.CrossRefGoogle Scholar
Meers, J. L. (1971). J. gen. Microbiol. 67, 359.CrossRefGoogle Scholar
Nolan, J. V. (1975). In Digestion and Metabolism in Ruminants [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, NSW, Australia: University of New England Publishing Unit.Google Scholar
Nolan, J. V. & Leng, R. A. (1972). Br. J. Nutr. 27, 177.CrossRefGoogle Scholar
Potter, B. J., Walker, D. J. & Forrest, W. W. (1972). Br. J. Nutr. 37, 75.Google Scholar
Shipley, R. A. & Clark, R. E. (1972). Tracer Methods for in vivo Kinetics. New York and London: Academic Press.Google Scholar
Sleeth, C. K. & van Liere, E. J. (1937). Am. J. Physiol. 118, 272.CrossRefGoogle Scholar
Steel, R. G. D. & Torrie, J. M. (1960). Principles and Procedures of Statistics. New York: McGraw-Hill Book Co. Google Scholar
Stouthamer, A. H. & Bettenhaussen, C. (1973). Biochim. biophys. Acta 301, 53.CrossRefGoogle Scholar
Tan, T. N., Weston, R. H. & Hogan, J. P. (1971). Int. J. appi. Radiat. Isotopes 22, 301.CrossRefGoogle Scholar
Thomas, P. C. (1973). Proc. Nutr. Soc. 32, 85.CrossRefGoogle Scholar
Thomson, D. J. (1972). Proc. Nutr. Soc. 31, 127.CrossRefGoogle Scholar
Titchen, D. A. (1968). In Handbook of Physiology, vol. 5, ch. 129 [Code, C. F., editor]. Washington, DC: American Physiological Society.Google Scholar
Topps, J. H., Kay, R. N. B. & Goodall, E. D. (1968). Br. J. Nutr. 22, 261.CrossRefGoogle Scholar
Walker, D. J., Egan, A. R., Nader, C. J., Ulyatt, M. J. & Storer, G. R. (1975). Aust.J. agric. Res. 26, 699.CrossRefGoogle Scholar
Weston, R. H. & Hogan, J. P. (1967). Aust. J. agric. Res. 18, 789.CrossRefGoogle Scholar
Westra, R. (1975). The effect of temperature on digestion in sheep. M.Sc. Thesis, University of Alberta, Canada.Google Scholar