Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T11:19:40.228Z Has data issue: false hasContentIssue false

Effect of baked beans (Phaseoh vulgaris) on steroid metabolism and non-starch polysaccharide output of hypercholesterolaemic pigs with or without an ileo-rectal anastomosis

Published online by Cambridge University Press:  10 October 2007

Neuza M. B. Costa
Affiliation:
Department of Food Science and Technology, University of Reading, Whiteknights, Reading RG6 2AP
A. Graham Low
Affiliation:
Department of Food Science and Technology, University of Reading, Whiteknights, Reading RG6 2AP
Ann F. Walker
Affiliation:
Department of Food Science and Technology, University of Reading, Whiteknights, Reading RG6 2AP
Robert W. Owen
Affiliation:
PHLS Centre for Applied Microbiology and Research, Division of Biotechnology. Sensor Development Group, Porton Down, Salisbury SP4 OJG
Hans N. Englyst
Affiliation:
Dunn Clinical Nutrition Centre, 100 Tennis Court Road, Cambridge CB2 lQL
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The plasma-cholesterol-lowering effects of some dietary legumes are now well established from animal and human studies, but the mechanism is not completely understood. The present study investigated the effect of baked beans (Phaseolus vulgaris) on steroid metabolism of hypercholesterolaemic pigs. Three groups of four pigs were studied: baseline (BL), normal pigs (NP) and those previously prepared with an ileo-rectal anastomosis to nullify the function of the large intestine (IR). All three groups were given a semi-purified control diet, with about 40% energy as fat (polyunsaturated: saturated fatty acid (P:S) ratio 0.3), supplemented with 10 g cholesterol/kg, for 14 d. Then IR and NP pigs were fed for 28 d on a diet supplemented with 10 g cholesterol/kg and 300 g baked beans/kg (dry-matter basis), so that the 40% contribution to energy from fat was maintained (P:S ratio 0.3). Group BL was fed on the control diet throughout. The intact pigs (NP) fed on baked beans showed considerable differences compared with the other groups, as follows: (a) reduced plasma cholesterol (NS); (b) higher concentration of cholesterol in bile (NS); (c) higher concentration of bile acids, especially secondary bile acids, in bile (P < 0.05); (d) reduced elimination of bile acids in faeces, especially secondary bile acids (P < 0.05); (e) higher excretion of coprostanol and lower elimination of cholesterol in faeces (P < 0.05). From these findings it is proposed that a baked-bean-enriched diet potentiates bacterial fermentation and steroid degradation in the large intestine and enhances conservation of bile acids and cholesterol within the enterohepatic circulation. The high concentration of bile acids and cholesterol in bile may thus promote feedback inhibition of hepatic cholesterol synthesis, and hence, reduce plasma cholesterol.

Type
Effects of complex carbohydrate foods on lipids
Copyright
Copyright © The Nutrition Society 1994

References

Allain, C. C., Poon, L. S., Chan, C. S. G., Richmond, W. & Fu, P. C. (1974). Enzymatic determination of total serum cholesterol. Clinical Chemistry 20, 470475.CrossRefGoogle ScholarPubMed
Alme, B. A., Bremmelgaard, A., Sjovall, J. & Thomassen, P. (1977). Analysis of metabolic profiles of bile acids in urine using lipophilic anion exchange and computerised gas-liquid chromatography-mass spectrometry. Journal of Lipid Research 18, 339362.CrossRefGoogle Scholar
Anderson, J. W. & Chen, W. J. L. (1979). Plant fiber. Carbohydrate and lipid metabolism. American Journal of Clinical Nutrition 32, 346363.CrossRefGoogle ScholarPubMed
Anderson, J. W., Gustafson, N. J., Spencer, D. B., Tietyen, J. & Bryant, C. A. (1990). Serum lipid response of hypercholesterolemic men to single and divided doses of canned beans. American Journal of Clinical Nutrition 51, 10131019.CrossRefGoogle ScholarPubMed
Anderson, J. W., Story, L., Sieling, B., Chen, W. J. L., Petro, M. S. & Story, J. A. (1984). Hypocholesterolemic effects of oat bran or bean intake for hypercholesterolemic men. American Journal of Clinical Nutrition 40, 11461155.CrossRefGoogle ScholarPubMed
Andrieux, C., Pacheco, E. D., Bouchet, B., Gallant, D. & Szylit, O. (1992). Contribution of the digestive tract microflora to amylomaize starch degradation in the rat. British Journal of Nutrition 67, 489499.CrossRefGoogle ScholarPubMed
Boila, R. J., Salomons, M. O., Milligan, L. P. & Aherne, F. X. (1981). The effect of dietary propionic acid on cholesterol synthesis in swine. Nutrition Reports International 23, 11131121.Google Scholar
Chang, K. C., Ethen, S., Harrold, R. & Brown, G. (1986). Effect of feeding dry beans on rat plasma cholesterol. Nutrition Reports International 33, 659664.Google Scholar
Chen, W. L., Anderson, J. W. & Jennings, D. (1984). Propionate may mediate the hypocholesterolemic effects of certain soluble plant fibers in cholesterol-fed rats. Proceedings of the Society for Experimental Biology and Medicine 175, 215218.CrossRefGoogle ScholarPubMed
Costa, N. M. B., Walker, A. F. & Low, A. G. (1993). The effect of graded inclusion of baked beans on plasma and liver lipids in hypercholesterolaemic pigs given a Western-type diet. British Journal of Nuirition 70, 515524.CrossRefGoogle Scholar
Ehle, F. R., Jeraci, J. L., Robertson, J. B. & Van Soest, P. J. (1982). The influence of dietary fibre on digestibility, rate of passage and gastrointestinal fermentation in pig. Journal of Animal Science 55, 10711081.CrossRefGoogle Scholar
Englyst, H. N. & Cummings, J. H. (1988). Improved method for measurement of dietary fiber as non-starch polysaccharides in plant food. Journal of the Association of Official Analytical Chemists 71, 808814.Google Scholar
Englyst, H. N. & Kingman, S. M. (1990). Dietary fiber and resistant starch. A nutritional classification of plant polysaccharides. In Dietary Fiber, pp. 4965 [Kritchevsky, D., Bonfield, C.,& Anderson, J. W., editors]. New York: Plenum Publishing Corp.CrossRefGoogle ScholarPubMed
Fleming, S. E. & Wasilewski, M. M. (1984). Using the pig as a tool for studying fermentation in the human gut. Nutrition Reports International 30, 825834.Google Scholar
Fossati, P. & Prencipe, L. (1982). Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clinical Chemistry 28, 20772080.CrossRefGoogle ScholarPubMed
Goodlad, J. S. & Mathers, J. C. (1991). Digestion by pigs of non-starch polysaccharides in wheat and raw peas (Pisum sativum) fed in mixed diets. British Journal of Nutrition 65, 259270.CrossRefGoogle ScholarPubMed
Green, S., Bertrand, S. L., Duron, M. J. C. & Maillard, R. A. (1987). Digestibility of amino acids in maize, wheat and barley meal, measured in pigs with ileo-rectal anastomosis and isolation of the large intestine. Journal of the Science of Food and Agriculture 40, 2943.Google Scholar
Grundy, S. M. (1978). Cholesterol metabolism in man. Western Journal of Medicine 128, 1325.Google ScholarPubMed
Hillman, L. C., Peters, S. G., Fisher, C. A. & Pomare, E. W. (1986). Effects of the fibre components pectin, cellulose, and lignin on bile salt metabolism and biliary lipid composition in man. Gut 27, 2936.CrossRefGoogle ScholarPubMed
Houghton, P. W. J., Owen, R. W., Mortensen, N. J. McC., Hill, M. J. & Williamson, R. C. N. (1989). Gastroduodenal and faecal bile acid metabolism after gastric surgery : implications for colonic and gastric carcinogenesis. Surgical Research Communicarions 6, 303311.Google Scholar
Illman, R. J., Topping, D. L., McIntosh, G. H., Trimble, R. P., Storer, G. B., Taylor, M. N. & Cheng, B. Q. (1988). Hypocholesterolaemic effects of dietary propionate: studies in whole animals and perfused rat liver. Annals of Nutrition and Metabolism 32, 97107.CrossRefGoogle ScholarPubMed
Kim, D. N., Lee, K. T., Reiner, J. M. & Thomas, W. A. (1980). Increased steroid excretion in swine fed high-fat, high cholesterol diet with soy protein. Experimental and Molecular Pathology 33, 2535.CrossRefGoogle ScholarPubMed
Kingman, S. M. (1991). The influence of legume seeds on human plasma lipid concentrations. Nutrition Research Reviews 4, 97123.CrossRefGoogle ScholarPubMed
Kritchevsky, D. (1979). Vegetable protein and atherosclerosis. Journal qf the American Oil Chemists Society 56, 135140.CrossRefGoogle ScholarPubMed
Longland, A. C. & Low, A. G. (1988). Digestion of diets containing molassed or plain sugar-beet pulp by growing pigs. Animal Feed Science and Technology 23, 6778.CrossRefGoogle Scholar
Marthinsen, D. & Fleming, S. E. (1982). Excretion of breath and flatus gases by humans consuming high-fiber diets. Journal of Nutrition 112, 11331143.CrossRefGoogle ScholarPubMed
Nervi, F., Covarrubias, C., Bravo, P., Velasco, N., Ulloa, N., Cruz, F., Fava, M., Severin, C., Del Pozo, R., Antezdna, C., Valvidieso, V. P. & Artega, A. (1989). Influence of legume intake on biliary lipids and cholesterol saturation in young Chilean men. Gustroenterologjy 96, 825830.CrossRefGoogle ScholarPubMed
Oakenfull, D. G., Fenwick, D. E., Hood, R. L., Topping, D. L., Illman, R. J. & Storer, G. B. (1979). Effects of saponins on bile acids and plasma lipids in the rat. British Journal of Nutrition 42, 209216.CrossRefGoogle ScholarPubMed
Owen, R. W., Thompson, M. H. & Hill, M. J. (1984). Analysis of metabolic profiles of steroids in faeces of healthy subjects undergoing chenodeoxycholic acid treatment by liquid-gel chromatography-mass spectrometry. Journal of Steroid Biochemistry 21, 593600.CrossRefGoogle ScholarPubMed
Pomare, E. W. & Heaton, K. W. (1973). Alteration of bile salt metabolism by dietary fiber (bran). British Medical Journal 4, 262264.CrossRefGoogle ScholarPubMed
Reddy, B. S., Watanabe, K. & Sheinfil, A. (1980). Effect of dietary wheat bran, alfalfa, pectin and carrageenan on plasma cholesterol and faecal bile acid and neutral sterol excretion in rats. Journal of Nutrition 110, 12471254.CrossRefGoogle ScholarPubMed
Rigotti, A., Marzolo, M. P., Ulloa, N., Gonzalez, O. & Nervi, F. (1989). Effect of bean intake on biliary lipid secretion and on hepatic cholesterol metabolism in the rat. Journal of Lipid Research 30, 10411048.CrossRefGoogle ScholarPubMed
Sharma, R. D. (1984). Hypocholesterolemic effect of hydroxy acid components of Bengal gram. Nutrition Reports International 29, 13151322.Google Scholar
Sharma, R. D. (1985). Hypocholesterolemic effect of gum acacia in men. Nutrition Research 5, 13211326.CrossRefGoogle Scholar
Shutler, S. M., Bircher, G. M., Tredger, J. A., Morgan, L. M., Walker, A. F. & Low, A. G. (1989). The effect of daily baked bean (Phaseolus vulgaris) consumption on the plasma lipid levels of young, normo-cholesterolaemic men. British Journal of Nutrition 61, 257265.CrossRefGoogle ScholarPubMed
Shutler, S. M., Low, A. G. & Walker, A. F. (1988). Influence of baked beans on plasma lipids in pigs fed on a hypercholesterolaemic diet. Proceedings of the Nutrition Society 47, 97A.Google Scholar
Shutler, S. M., Walker, A. F. & Low, A. G. (1987 a). The cholesterol-lowering effects of legumes. I. Effects of the major nutrients. Human Nutrition: Food Sciences and Nutrition 41F, 7186.Google Scholar
Shutler, S. M., Walker, A. F. & Low, A. G. (1987 b). The cholesterol-lowering effects of legumes. II. Effects of fibre, sterols, saponins and isoflavones. Human Nutrition: Food Sciences and Nutrition 41F, 87102.Google Scholar
Sidhu, G. S., Upson, B. & Malinow, M. R. (1987). Effects of soy saponins and tigogenin cellobioside on intestinal uptake of cholesterol, cholate and glucose. Nutririon Reports International 35, 615623.Google Scholar
Spigelman, A. D., Owen, R. W., Hill, M. J. & Phillips, R. K. S. (1991). Biliary bile acid profiles in familial adenomatous polyposis. British Journul of Surgery 78, 321325.CrossRefGoogle ScholarPubMed
Story, J. A. (1986). Modification of steroid excretion in response to dietary fiber. In Dietary Fiber. Basic and Clinical Aspects [Vahouny, G. V. & Kritchevsky, D., editors]. New York: Plenum.Google Scholar
Story, J. A. & Kritchevsky, D. (1978). Bile acid metabolism and fiber. American Journal of Clinical Nutrition 31, Sl99–S202.CrossRefGoogle ScholarPubMed
Thacker, P. A., Salomons, M. O., Aherne, F. X., Milligan, L. P. & Bowland, J. P. (1981). Influence of propionic acid on the cholesterol metabolism of pigs fed hypercholesterolemic diets. Canadian Journal of Animal Science 61, 969975.CrossRefGoogle Scholar
Vahouny, G. V., Khalafi, R., Satchithanandan, S., Wdtkins, D. W., Story, J. A., Cassidy, M. M. & Kritchevsky, D. (1987). Dietary fiber supplementation and fecal bile acids, neutral steroids, and divalent cations in rats. Journal of Nutrition 117, 20092015.CrossRefGoogle ScholarPubMed
Vervaeke, I. J., Dierick, N. A., Demeyer, D. I. & Decuypere, J. A. (1989). Approach to the energetic importance of fibre digestion in pigs. 11. An experimental approach to hindgut digestion. Animal Feed Science and Technology 23, 169194.CrossRefGoogle Scholar
Warnick, G. R., Benderson, J. & Albers, J. J. (1982). Dextran sulfate-Mg2 precipitation procedure for quantitation of high-density-lipoprotein cholesterol. Clinical Chemistry 28, 13791388.CrossRefGoogle ScholarPubMed