Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T11:31:58.710Z Has data issue: false hasContentIssue false

The effect of alcohol on resting metabolic rate

Published online by Cambridge University Press:  09 March 2007

Kathryn Rosenberg
Affiliation:
Institute of Physiology, University of Glasgow, Glasgow G12 8QQ, Scotland
J. V. G. A. Durnin
Affiliation:
Institute of Physiology, University of Glasgow, Glasgow G12 8QQ, Scotland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. There was a significant increase in oxygen consumption in ten women after small intakes of alcohol.

2. No significant difference was found between the average increase in metabolic rate over 3 h after an isoenergetic meal of food or of food plus alcohol. However, during the last half of the 3 h postprandial period, the increased O2 consumption was significantly greater after the meal including alcohol.

3. Possible explanations for the contradictory results in the literature are discussed.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

Atwater, W. O. & Benedict, F. G. (1902). Mem. natn. Acad. Sci. no. 6, VIII.Google Scholar
Bahn, A. K. (1972). Basic Medical Statistics, p. 178. New York and London: Grune and Stratten.Google Scholar
Barnes, E. W., Cooke, N. J., King, A. J. & Passmore, R. (1965). Br. J. Nutr. 19, 485.CrossRefGoogle Scholar
Berkson, J. & Boothby, W. M. (1938). Am. J. Physiol. 121, 669.CrossRefGoogle Scholar
Davidson, S., Passmore, R., Brock, J. F. & Truswell, A. S. (1975). Human Nutrition and Dietetics, 6th ed., p. 91. Edinburgh: Churchill Livingstone.Google Scholar
Du Bois, E. F. (1927). Basal Metabolism in Health and Disease, 2nd ed., pp. 50–1. Philadelphia: Lea and Febiger.Google Scholar
Durnin, J. V. G. A., Rahaman, M. M. & Ferro-Luzzi, A. (1966). Proc. Nutr. Soc. 25, xv.Google Scholar
Garrow, J. S. & Hawes, S. F. (1972). Br. J. Nutr. 27, 211.CrossRefGoogle Scholar
Higgins, H. L. (1917). J. Pharmac. 9, 441.Google Scholar
Kalant, H., Hawkins, R. D. & Watkin, G. S. (1963). Can. J. Biochem. Physiol. 41, 2197.CrossRefGoogle Scholar
Le Breton, E. & Trémolières, J. (1955). Proc. Nutr. Soc. 14, 97.CrossRefGoogle Scholar
Nagamine, S., Tezuka, T., Yamakawa, K. & Suzuki, S. (1961). Rep. natn. Inst. Nutr., Tokyo p. 7.Google Scholar
Perman, E. S. (1961). Biochem. Pharmac. 8, 172.CrossRefGoogle Scholar
Perman, E. S. (1962 a). Acta physiol. scand. 55, 189.CrossRefGoogle Scholar
Perman, E. S. (1962 b). Acta physiol. scand. 55, 207.CrossRefGoogle Scholar
Pittet, Ph., Gygax, P.-H. & Jéquier, E. (1974). Br. J. Nutr. 31, 343.CrossRefGoogle Scholar
Shrimpton, R. (1972). Proc. Nutr. Soc. 31, 35A.Google Scholar
Stock, A. L., Stock, M. J. & Stuart, J. A. (1973). Proc. Nutr. Soc. 32, 40A.Google Scholar
Stock, M. J. & Stuart, J. A. (1974). Nutr. Metab. 17, 297.CrossRefGoogle Scholar
Williams, M. H. (1972). Res. Quart. 43, 94.Google Scholar