Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T02:26:01.842Z Has data issue: false hasContentIssue false

Does chronic supplementation of the diet with dietary fibre extracted from pea or carrot affect colonic motility in man?

Published online by Cambridge University Press:  09 March 2007

Claire GuéDon
Affiliation:
Groupe de Physiopathologie Digestive et Nutritionnelle, Hôpital Charles Nicolle, l rue de Germont, F-76031 Rouen Cedex, France
Philippe Ducrotté
Affiliation:
Groupe de Physiopathologie Digestive et Nutritionnelle, Hôpital Charles Nicolle, l rue de Germont, F-76031 Rouen Cedex, France
Jean Michel Antoine
Affiliation:
BSN, 6 rue de Téhéran, F-75006, Paris, France
Philippe Denis
Affiliation:
Groupe de Physiopathologie Digestive et Nutritionnelle, Hôpital Charles Nicolle, l rue de Germont, F-76031 Rouen Cedex, France
Raymond Colin
Affiliation:
Groupe de Physiopathologie Digestive et Nutritionnelle, Hôpital Charles Nicolle, l rue de Germont, F-76031 Rouen Cedex, France
Eric Lerebours
Affiliation:
Groupe de Physiopathologie Digestive et Nutritionnelle, Hôpital Charles Nicolle, l rue de Germont, F-76031 Rouen Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of the present study was to assess, in healthy volunteers and under physiological conditions, the acceptability, clinical tolerance and effects on colonic motility of chronic supplementation of the usual diet with new dietary fibre sources. Three studies were carried out, one after a period of habitual diet, and two after randomized 3-week periods of supplementation with fibre extracted either from pea hulls or carrots, added to the meals as a fine powder. The 24 h motility was recorded on an unprepared colon at five levels to determine the initiation site and the number of high amplitude propagated contractions (HAPC) and to quantify motor activity every 30 min, particularly in the two periods following lunch and breakfast. With the habitual diet the motility pattern was an irregular alternation of quiescence and sporadic non-propagated contractions. HAPC always started from the ascending colon and occurred mainly after breakfast. With either type of fibre the 24 h motor profiles, the 24 h variations and the number of HAPC were not significantly modified but a more distal initiation of HAPC was found. The colonic postprandial motor response was more diffuse after dietary enrichment with carrot fibre than after enrichment with pea-hull fibre. In healthy volunteers the long-term addition of fibre extracted from pea hulls and carrots to the usual diet was easy and well-tolerated without clinical side-effects, but with limited colonic motor effects. However, the more distal initiation of HAPC observed could be deleterious.

Type
Human and Clinical Nutrition
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Arndorfer, R. C., Stef, J. J., Dodds, W. J., Linehan, J. H. & Hogan, W. J. (1977). Improved infusion system for intraluminal esophageal manometry. Gastroenterology 73, 2327.CrossRefGoogle ScholarPubMed
Bassotti, G., Betti, C., Fusaro, C. & Morelli, A. (1992). Colonic high-amplitude propagated contractions (mass movements): repeated 24 h manometric studies in healthy volunteers. Journal of Gastrointestinal Motility 4, 187191Google Scholar
Bassotti, G., Betti, C., Imbimbo, B. P., Pelli, M. A. & Morelli, A. (1989). Colonic motor response to eating:a manometric investigation in maximal and distal portions of the viscus in man. American Journal of Gastroenterology 84, 118122.Google Scholar
Bassotti, G. & Gaburri, M. (1988). Manometric investigation of high-amplitude propagated contractile activity of the human colon. American Journal of Physiology 255, G660–G664.Google ScholarPubMed
Bassotti, G., Gaburri, M., Imbimbo, B. P., Morelli, A. & Whitehead, W. E. (1994). Distension-stimulated propagated contractions in human colon. Digestive Diseases and Sciences 9, 19551960.CrossRefGoogle Scholar
Bassotti, G., Gaburri, M., Imbimbo, B. P., Rossi, L., Farroni, F., Pelli, M. A. & Morelli, A. (1988). Colonic mass movements in idiopathic chronic constipation. Gut 29, 11731179.CrossRefGoogle ScholarPubMed
Bazzochi, G., Ellis, J.,Villanueva-Meyer, J., Jing, J., Reddy, S. N., Mena, I. & Snape, W. J. (1990). Postprandial colonic transit and motor activity in chronic constipation. Gastroenterology 98, 686693.CrossRefGoogle Scholar
Burkitt, D. P., Walker, A. R. P. & Painter, N. S. (1972). Effect of dietary fibres on stools and transit times, and its role in the causation of disease. Lancet ii, 14081412.CrossRefGoogle Scholar
Cook, I. J., Irvine, E. J., Campbell, D., Shannon, S., Reddy, S. N. & Collins, S. M. (1990). Effect of dietary fiber on symptoms and rectosigmoid motility in patients with irritable bowel syndrome. Gastroenterology 98, 6672.CrossRefGoogle ScholarPubMed
Cowgill, G. R. & Andersson, W. E. (1932). Laxative effects of wheat bran and ‘washed bran’ in healthy men. Journal of the American Medical Association 98, 18661875.Google Scholar
Crowell, M. D., Bassotti, G., Cheskin, L. J., Schuster, M. M. & Whitehead, W. E. (1991). Method for prolonged ambulatory monitoring of high-amplitude propagated contractions from colon. American Journal of Physiology 261, G263–G268.Google ScholarPubMed
Cummings, J. H. (1981). Dietary fibre. British Medical Bulletin 37, 6770.Google Scholar
Cummings, J. H., Bingham, S. A., Heaton, K. W. & Eastwood, M. A. (1992). Fecal weight, colon cancer risk and dietary intake of non-starch polysaccharides (dietary fibre). Gastroenterology 103, 17831789.CrossRefGoogle Scholar
Cunningham, K. M., Daly, J., Horowitz, M. & Read, N. W. (1991). Gastrointestinal adaptation to diets of differing fat composition in human volunteers. Gut 32, 483486.Google Scholar
Dapoigny, M. & Sarna, S. K. (1991). Effect of physical exercise on colonic motor activity. American Journal of Physiology 260, G646–G652.Google ScholarPubMed
De Wever, I., Eeckout, C., Van Trappen, G. & Hellemans, J. (1978). Disruptive effect of test meals on interdigestive motor complex in dogs. American Journal of Physiology 235, E661–E665.Google Scholar
Dinoso, V. P., Murthy, S. N. S., Goldstein, J. & Rossner, B. (1983). Basal motor activity of the distal colon: a reappraisal. Gastroenterology 85, 637642.CrossRefGoogle Scholar
Drossman, D. A., Sandler, R. S., McKee, D. & Lovitz, A. J. (1982). Bowel patterns among subjects not seeking health care. Use of questionnaire to identify a population with bowel dysfunction. Gastroenterology 83, 529534.CrossRefGoogle Scholar
Edelbroek,, M., Horowitz, M., Fraser, R., Wishart, J., Morris, H., Dent, J. & Akkermans, L. (1992). Adaptative changes in the pyloric motor response to intraduodenal dextrose in normal subjects. Gastroenterology 103, 17541761.CrossRefGoogle ScholarPubMed
Englyst, H. N. (1981). Determination of carbohydrate and its composition in plant materials. In Basic and Clinical Nutrition. The Analysis of Dietary Fibre in Food, vol. 3, pp. 7193. [ James, W.P.T. and Theander, O., editors]. New York: Marcel Dekker Inc.Google Scholar
Florent, C., Flourie, B., Leblond, A., Rautureau, M., Bernier, J.-J. & Rambaud, J.-C. (1985). Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study). Journal of Clinical Investigation 75, 608613.CrossRefGoogle ScholarPubMed
Kamath, P. S., Phillips, S. F. & Zinsmeister, A. R. (1988). Short-chain fatty acids stimulate ileal motility in humans. Gastroenterology 95, 14961502.CrossRefGoogle ScholarPubMed
Lucey, M. R., Clark, M. L., Lowndes, J. O. & Dawson, A. M. (1987). Is bran efficacious in irritable bowel syndrome? A double-blind placebo controlled cross-over study. Gut 28, 221225.CrossRefGoogle Scholar
Moreno-Osset, E., Bazzochi, G., Lo, S., Trombley, B., Ristow, E., Reddy, S. N., Villanueve-Meyer, J., Fain, J. W., Jing, J., Mena, I. & Snape, W. J. (1989). Association between postprandial changes in colonic intraluminal pressure and transit. Gastroenterology 96, 12651273.CrossRefGoogle ScholarPubMed
Muller-Lissner, S. (1988). Effect of wheat bran on weight of stool and gastrointestinal transit time: a meta-analysis. British Medical Journal 296, 615617.Google Scholar
Muller-Lissner, S. (1993). Constipation and irritable bowel syndrome. European Journal of Gastroenterology and Hepatology 8, 587592.CrossRefGoogle Scholar
Narducci, F., Bassotti, G., Gaburri, M. & Morelli, A. (1987). Twenty-four hour recording of colonic motor activity in healthy man. Gut 28, 1725.Google Scholar
Payler, D. K., Pomare, E. W., Heaton, K. W. & Harvey, R. F. (1975). The effect of wheat bran on intestinal transit. Gut 6, 209213.CrossRefGoogle Scholar
Picon, L., Lemann, M., Flourie, B., Rambaud, J.-C., Rain, J.-D. & Jian, R. (1992). Right and left colonic transit after eating assessed by a dual isotopic technique in healthy humans. Gastroenterology 103, 8085.Google Scholar
Proano, M., Camilleri, M., Philips, S. F., Brown, M.L. & Thomforde, G. (1990). Transit of solids through the human colon: regional quantification in the unprepared bowel. American Journal of Physiology 258, G856G862.Google Scholar
Reddy, S. N., Bazzochi, G., Chan, N. S., Akashi, K., Villanueve-Meyer, J., Yanni, G., Mena, I. & Snape, W. J. (1991). Colonic motility and transit in health and ulcerative colitis. Gastroenterology 101, 12891297.CrossRefGoogle ScholarPubMed
Reilly, K. J., Frankel, W. L., Bain, A. M. & Rombeau, J. L. (1995). Colonic short chain fatty acids mediate jejunal growth by increasing gastrin. Gut 37, 8186.CrossRefGoogle ScholarPubMed
Salvador, V., Cherbut, C., Barry, J.-L., Bertrand, D., Bonnet, C. & Delort-Laval, J. (1993). Sugar composition of dietary fibre and short-chain fatty acid production during in vitro fermentation by human bacteria. British Journal o f Nutrition 70. 189197.CrossRefGoogle ScholarPubMed
Sarna, S. K. (1991). Physiology and pathophysiology of colonic motor activity. Digestive Diseases and Sciences 36, 9981018.CrossRefGoogle ScholarPubMed
Snape, W. J., Matarazzo, S. A. & Cohen, S. (1978). Effect of eating and gastrointestinal hormones on human colonic myoelectrical and motor activity. Gastroenterology 75, 373378.CrossRefGoogle ScholarPubMed
Soffer, E. E., Scalabrini, P. & Wingate, D. L. (1989). Prolonged ambulant monitoring of human colonic motility. American Journal of Physiology 257, G601–G606.Google ScholarPubMed
Spiller, G. A. (1986). Suggestions for a basis on which to determine a desirable intake of dietary fiber. In Handbook of Dietary Fiber in Human Nutrition, pp. 281283 [Spiller, G.A., editor]. Boca Raton: CRC Press Ltd.Google Scholar
Tomlin, J., Brown, S. R., Cann, P. A. & Read, N. W. (1991). Is rectosigmoid response to food modulated by proximal colon stimulation? Digestive Diseases and Sciences 36, 14811485.Google Scholar
Tomlin, J. & Read, N. W. (1988). Laxative properties of plastic particles. British Medical Journal 297, 11751176.Google Scholar