Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T11:10:16.417Z Has data issue: false hasContentIssue false

Distribution of copper and zinc in the liver of the developing sheep foetus

Published online by Cambridge University Press:  24 October 2018

I. Bremner
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
R. B. Williams
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
B. W. Young
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

  1. 1. A study has been made of the copper- and zinc-binding proteins in the livers from sheep foetuses of 80-142 d gestational age.

  2. 2. Metallothionein was found to constitute the major Zn-binding component in the cytosol at all times and to be identical to Zn-thionein from adult sheep liver.

  3. 3. Zn also occurred in two fractions, not normally found in sheep liver, with approximate molecular weights of 28000 and 47000. The relative proportions of these were age-dependent.

  4. 4. Between 15 and 35 % of the hepatic Cu, corresponding to most of the Cu in the cytosol, also occurred in the metallothionein-containing fraction.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1977

References

Andrews, P. (1965). Biochem. J. 96, 595.CrossRefGoogle Scholar
Bennetts, H. W. & Chapman, F. E. (1937). Aust. vet. J. 13, 138.CrossRefGoogle Scholar
Bremner, I. & Davies, N. T. (1975). Biochem. J. 149, 733.Google Scholar
Bremner, I. & Marshall, R. B. (1974a). Br. J. Nutr. 32, 283.CrossRefGoogle Scholar
Bremner, I. & Marshall, R. B. (19746). Br. J. Nutr. 32, 293.CrossRefGoogle Scholar
Bremner, I. & Young, B. W. (1976). Biochem. J. 155, 631.CrossRefGoogle Scholar
Hurley, L. S. & Swenerton, H. (1966). Proc. Soc. exp. Biol. Med. 123, 692.CrossRefGoogle Scholar
Porter, H. (1970). In Trace Element Metabolism in Animals, p. 237. [C. F. Mills, editor]. Edinburgh: E. & S. Livingstone.Google Scholar
Porter, H. (1974). Biochem. biophys. Res. Commun. 56, 661.CrossRefGoogle Scholar
Pryor, W. J. (1964). Res. vet. Sci. 5, 123.Google Scholar
Robinson, J. J. & Orskov, E. R. (1975). WldRev. Anim. Prod. 11, 63.Google Scholar
Rupp, H. & Weser, U. (1974). FEBS Lett. 44, 293.CrossRefGoogle Scholar
Suttle, N. F. & Field, A. C. (1968). J. comp. Path. Ther. 78, 351.Google Scholar
Wainman, F. W., Blaxter, K. L. & PuUar, J. P. (1970). J. agric. Sci., Camb. 74, 311.Google Scholar
Widdowson, E. M., Chan, H., Harrison, G. E. & Milner, R. D. G. (1972). Biol. Neonate 20, 360.Google Scholar
Widdowson, E. M., Dauncey, J. & Shaw, J. C. L. (1974). Proc. Nutr. Soc. 33, 275.CrossRefGoogle Scholar
Williams, R. B. & Bremner, I. (1976). Proc. Nutr. Soc. 35, 86..Google Scholar