Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T20:27:05.881Z Has data issue: false hasContentIssue false

The distribution and metabolism of α-tocopherol in the rat

Published online by Cambridge University Press:  09 March 2007

A. Mellors
Affiliation:
Biochemistry Department, University of Liverpool
M. McC. Barnes
Affiliation:
Biochemistry Department, University of Liverpool
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A comparison of the distribution of radioactivity in rat tissue lipids after oral administra- tion of [5-Me-14C]-α-tocopherol showed that spleen and adrenal lipids have a relatively high uptake of radioactivity. 2. Absorbed α-tocopherol and its metabolites appeared not to re-enter the lumen of the gut in significant amount through the bile or by the secretion from the stomach mucosal cells within the 24 h experimental period. 3. After ingestion of [5-Me-14C]-α-tocopherol by rats, analyses of their liver and spleen lipids showed that most of the radioactivity in the lipids was due to the presence of unchanged α-tocopherol. Radioactive tocopherolquinone was found in both spleen and liver lipids; in the liver lipids there was some evidence that a second oxidation product of α-tocopherol, compound O, had been formed.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1966

References

Alaupović, P., Johnson, B. C., Crider, Q., Bhagavan, H. N. &Johnson, B. J. (1961). Am. J. clin. Nutr. 9, no. 4, part 2, P. 76.CrossRefGoogle Scholar
Albrink, M. J. (19591960). J. Lipid Res. 1, 53.CrossRefGoogle Scholar
Csallany, A. S. &Draper, H. H. (1963). J. biol. Chem. 238, 2912.CrossRefGoogle Scholar
Draper, H. H., Csallany, A. S. &Shah, S. N. (1962). Biochim. biophys. Acta, 59, 527.CrossRefGoogle Scholar
Duggan, D. E. (1959). Arch. Biochem. Biophys. 84, 116.CrossRefGoogle Scholar
Folch, J., Lees, M. &Stanley, G. H. S. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Green, J., Diplock, A. T., Bunyan, J., Edwin, E. E. &McHale, D. (1961). Nature, Lond., 190, 318.CrossRefGoogle Scholar
Green, J., Edwin, E. E., Diplock, A. T. &Bunyan, J. (1961).Biochim. biophys. Acta, 49, 417.CrossRefGoogle Scholar
Johnson, B. C. (1956). In Vitamina E. Atti del Terzo Congresso Internationale, Venezia, 1955, p. 125. Verona: Edizioni Valdonega.Google Scholar
Klatskin, G. &Molander, D. W. (1952). J. clin. Invest. 31, 159.CrossRefGoogle Scholar
Krishnamurthy, S. &Bieri, J. G. (1963). J. Lipid Res. 4, 330.CrossRefGoogle Scholar
Martius, C. &Fürer, E. (1963). Biochem. Z. 336, 474.Google Scholar
Morton, R. A. &Phillips, W. E. J. (1959). Biochem. J. 73, 427.CrossRefGoogle Scholar
Nelan, D. R. &Robeson, C. D. (1962). J. Am. chem. Soc. 84, 2963.CrossRefGoogle Scholar
Plack, P. A. &Bieri, J. G. (1964). Biochim. biophys. Acta, 84, 729.Google Scholar
Scharpenseel, H. W. (1959). Landw. Forsch. 12, 120.Google Scholar
Schmandke, H. &Proll, J. (1964). Int. Z. VitamForsch. 34, 312.Google Scholar
Schneider, W. C. (1948). J. biol. Chem. 176, 259.CrossRefGoogle Scholar
Schudel, P., Mayer, H., Metzger, J., Rüegg, R. &Isler, O. (1963). Helv. chim. Acta, 46, 636.CrossRefGoogle Scholar
Simon, E. J., Eisengart, A., Sundheim, L. &Milhorat, A. T. (1956). J. biol. Chem. 221, 807.CrossRefGoogle Scholar
Simon, E. J., Gross, C. S. &Milhorat, A. T. (1956). J. biol. Chem. 221, 797.CrossRefGoogle Scholar
Skinner, W. A. &Alaupović, P. (1963). Science, N. Y., 140, 803.CrossRefGoogle Scholar
Skinner, W. A. &Parkhurst, R. M. (1964). J, org. Chem. 29, 3601.CrossRefGoogle Scholar
Society for Analytical Chemistry: Analytical Methods Committee (1959). Analyst, Lond., 84, 356.CrossRefGoogle Scholar
Sternberg, J. &Pascoe-Dawson, E. (1959). Can. med. Ass. J. 80, 266.Google Scholar
Weber, F. &Wiss, O. (1963). Helv. physiol. pharmac. Acta, 21, 131.Google Scholar
Wiss, O., Bunnell, R. H. &Gloor, U. (1962). Vitams Horm. 20, 441.CrossRefGoogle Scholar