Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T13:51:46.801Z Has data issue: false hasContentIssue false

Dissociation of methionine synthetase (EC 2.1.1.13) activity and impairment of DNA synthesis in fruit bats (Rousettus aegyptiacus) with nitrous oxide-induced vitamin B12 deficiency

Published online by Cambridge University Press:  09 March 2007

Susan V. Van tonder
Affiliation:
Department of Haematology, School of Pathology of the South African Institute for Medical Research, PO Box 1038, Johannesburg 2000, South Africa and the University of the Witwatersrand, Johannesburg, South Africa
Angela Ruck
Affiliation:
Department of Haematology, School of Pathology of the South African Institute for Medical Research, PO Box 1038, Johannesburg 2000, South Africa and the University of the Witwatersrand, Johannesburg, South Africa
J. Van der Westhuzen
Affiliation:
Department of Haematology, School of Pathology of the South African Institute for Medical Research, PO Box 1038, Johannesburg 2000, South Africa and the University of the Witwatersrand, Johannesburg, South Africa
F. Fernandes-costa
Affiliation:
Department of Haematology, School of Pathology of the South African Institute for Medical Research, PO Box 1038, Johannesburg 2000, South Africa and the University of the Witwatersrand, Johannesburg, South Africa
J. Metz
Affiliation:
Department of Haematology, School of Pathology of the South African Institute for Medical Research, PO Box 1038, Johannesburg 2000, South Africa and the University of the Witwatersrand, Johannesburg, South Africa
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of methylcobalamin inactivation by the anaesthetic gas nitrous oxide on the activity of the cobalamin-dependent methionine synthetase (5-methyltetrahydrofolate homocysteine methyltransferase; EC 2.1. I. 13) reaction, and on DNA synthesis, in the fruit bat Rousettus aegyptiucus, was examined.

2. Methionine synthetase activity in the liver of bats exposed to N2O—oxygen (50: 50, v/v) for 90 min/d averaged 32% of that of controls after 4 d of exposure and only 5% after 12–14 weeks of exposure.

3. DNA synthesis in the bone marrow, as reflected by the deoxyuridine suppression test, was unaffected by 4 d of exposure to N2O and only minimally affected after 5–10 weeks of exposure.

4. These results suggest that DNA synthesis in the fruit bat is unusually resistant to inhibition of methionine synthetase and imply the existence of a non-methylated circulating folate pool in this species.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Amess, J. A. L., Burman, J. F., Rees, G. M., Nancekievill, D. J. & Mollin, D. L. (1978). Lancet 2, 339342.CrossRefGoogle Scholar
Amos, R. J., Amess, J. A. L., Hinds, C. J. & Mollin, D. L. (1982). Lancet ii, 835839.CrossRefGoogle Scholar
Banks, R. G. S., Henderson, R. J. & Pratt, J. M. (1968). Journal of the Chemistry Society A, 28862888.CrossRefGoogle Scholar
Das, K. C. & Herbert, V. (1976). Seminars in Haematology 5, 697726.Google Scholar
Deacon, R., Chanarin, I., Perry, J. & Lumb, M. (1980 a). Biochemical and Biophysical Research Communications 93, 516520.CrossRefGoogle Scholar
Deacon, R., Lumb, M., Muir, M., Perry, J., Chanarin, I., Minty, B., Halsey, M. J. & Nunn, J. (1979). In Vitamin B12, pp. 10551060 [Zagalak, B. and Friedrich, W., editors]. Berlin: W. de Gruyter.Google Scholar
Deacon, R., Lumb, M., Perry, J., Chanarin, I., Minty, B., Halsey, M. J. & Nunn, J. F. (1978). Lancet ii 10231024.Google Scholar
Deacon, R., Lumb, M., Perry, J., Chanarin, I., Minty, B., Halsey, M. & Nunn, J. (19806). Journal of Biochemistry 104, 419422.Google Scholar
Dinn, J. J., McCann, S., Wilson, P., Reed, B., Weir, D. and Scott, J. (1978). Lancet ii 1154.Google Scholar
Green, R. S., van Tonder, S. V., Oettle, G. J., Cole, G. & Metz, J. (1975). Nature 254, 148150.CrossRefGoogle Scholar
Herbert, V., Larrabee, A. R. & Buchanan, J. M. (1962). Journal of Clinical Investigation 41, 11341138.CrossRefGoogle Scholar
Herbert, V. & Zalusky, R. (1962). Journal of Clinical Investigation 41, 12631276.CrossRefGoogle Scholar
Killman, S. A. (1964). Acta Medica Scandinavica 175, 483497.CrossRefGoogle Scholar
Kondo, H., Osborne, M. L., Kolhouse, J. F., Binder, M. J., Podell, E. R., Utley, C. S., Abrams, R. S. & Allen, R. H. (1981). Journal of Clinical Investigation 67, 12701283.CrossRefGoogle Scholar
Metz, J., Kelly, A., Swett, V. C., Waxman, S. & Herbert, V. (1968). British Journal of Haematology 14, 575592.Google Scholar
Miller, M., Fernandes–Costa, F. & Metz, J. (1980). British Journal of Nutrition 44, 229–235.CrossRefGoogle Scholar
Noronha, J. M. & Silverman, M. (1962). In Vitamin B12 and Intrinsic Factor. 2nd European Symposium, Hamburg, pp. 728731 [Heinrich, M. C., editor]. Stuttgart: Enke Verlag.Google Scholar
Perry, J., Lumb, M., van der Westhuyzen, J., Fernandes-Costa, F., Metz, J. & Chanarin, I. (1979). In Chemistry and Biology of Preridines, pp. 315320. [Kisluik, J. L. and Brown, G. M., editors]. Amsterdam: Elsevier–North Holland.Google Scholar
Poston, J. M. & Stadtman, T. C. (1975). In Cobalamin, 1st ed., pp. 141214 [Babior, B. M., editor]. New York: John Wiley.Google Scholar
Scott, J. M. & Weir, D. G. (1976). Seminars in Haemarology 5, 547568.Google Scholar
Taylor, R. T. & Weissbach, H. (1971). Methods in Enzymology 18, 379380.Google Scholar
van der Westhuyzen, J., Fernandes–Costa, F., Metz, J., Drivas, G. & erbert, V. (1982). Proceedings of the Society for Experimental Biolgy and Medicine 171, 8891.Google Scholar
van Tonder, S. V., Metz, J. & Green, R. (1975). British Journal of Nutrition 34, 397410.Google Scholar