Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T02:53:53.341Z Has data issue: false hasContentIssue false

Digestion of polysaccharides, protein and lipids by adult cockerels fed on diets containing a pectic cell-wall material from white lupin (Lupinus albus L.) cotyledon

Published online by Cambridge University Press:  24 July 2007

B. Carré
Affiliation:
Institut National de la Recherche Agronomique, Station de Recherches Avicoles, Centre de Tours-Nouzilly, France
B. Leclercq
Affiliation:
Institut National de la Recherche Agronomique, Station de Recherches Avicoles, Centre de Tours-Nouzilly, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The cell-wall material of white lupin (Lupinus albus L.) cotyledon is characterized by low contents of cellulose (47 g/kg) and lignin (17 g/kg) and a high content of pectic substances (710 g/kg). The digestion of lupin cell-wall material by adult cockerels was estimated using gas-liquid chromatographic analyses of alditol acetates derived from polysaccharide sugars. The analyses were performed in the destarched water-insoluble fractions of feed and excreta. Digestibility measurements were carried out using a 3 d balance period including a 2 d feeding period and a 24 h final starvation period.

2. In the first experiment, six animals were given a diet containing 510 g white lupin cotyledon flour/kg which was the only source of protein and cell walls in the diet. The apparent digestibility of cell-wall components was near zero.

3. In the second experiment, three diets were prepared by diluting a fibre-free basal diet (diet A) by a semi-purified cell-wall preparation introduced at two different levels: 100 g/kg (diet B) and 200 g/kg (diet C). The semi-purified cell walls were prepared from the white lupin cotyledon flour used in the first experiment. The true digestibilities of polysaccharides measured in birds given diets B and C were near zero. It is suggested that the measurement of the neutral-detergent fibre (NDF) content according to Van Soest & Wine (1967) is not a suitable procedure for estimating the undigestible fibre content in poultry nutrition as the cell-wall pectic substances are not included in the NDF measurement.

4. Addition of the semi-purified cell-wall preparation (Expt 2) resulted in a slight decrease in the apparent protein digestibility. This decrease might be explained by the addition of undigestible cell-wall protein.

5. Addition of the semi-purified cell-wall preparation (Expt 2) had no effect on the apparent lipid digestibility.

6. The metabolizable energy values of the basal diet fraction of diets B and C were calculated assuming that the added plant cell-wall fraction was of no energy value. These calculated values were similar to the measured metabolizable energy value of diet A (basal). Thus, the tested pectic plant cell walls seemed to act as a diluent. It is suggested that, on the point of the digestion yields, all types of plant cell walls would act as diluents, in poultry.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Akiba, Y. & Matsumoto, T. (1980). Journal of Nutrition 110, 11121121.CrossRefGoogle Scholar
Albersheim, P., Nevins, D. J., English, P. D. & Karr, A. (1967). Carbohydrate Research 5, 340345.CrossRefGoogle Scholar
Almquist, H. J. & Halloran, H. R. (1971). Poultry Science 50, 12331235.CrossRefGoogle Scholar
Antoniou, T. C., Marquardt, R. R. & Cansfield, P. E. (1981). Journal of Agricultural and Food Chemistry 29, 12401247.CrossRefGoogle Scholar
Bailey, R. W. (1971). In Chemotaxonomy of the Leguminosae, pp. 503541 [Harborne, J. B., Boulter, D. and Turner, B. L., editors]. London and New York: Academic Press.Google Scholar
Begin, J. J. (1961). Poultry Science 40, 892900.CrossRefGoogle Scholar
Belyea, R. L., Foster, M. B. & Zinn, G. M. (1983). Journal of Dairy Science 66, 12771281.CrossRefGoogle Scholar
Bertrand, D., Brillouet, J. M., Rasper, V. F., Bouchet, B. & Mercier, C. (1981). Cereal Chemistry 58, 375380.Google Scholar
Björnhag, G. & Sperber, I. (1977). Swedish Journal of Agricultural Research 7, 5766.Google Scholar
Blumenkrantz, N. & Asboe-Hansen, G. (1973). Analytical Biochemistry 54, 484489.CrossRefGoogle Scholar
Bolton, W. (1955 a). Journal of Agricultural Science, Cambridge 46, 119122.CrossRefGoogle Scholar
Bolton, W. (1955 b). Journal of Agricultural Science, Cambridge 46, 420424.CrossRefGoogle Scholar
Brillouet, J. M. & Carré, B. (1983). Phytochemistry 22, 841847.CrossRefGoogle Scholar
Carré, B., Brillouet, J. M. & Thibault, J. F. (1985). Journal of Agricultural and Food Chemistry 33, 285292.CrossRefGoogle Scholar
Carré, B., Prévotel, B. & Leclercq, B. (1984). British Poultry Science 25, 561572.CrossRefGoogle Scholar
Cherry, J. A. & Jones, D. E. (1982). Poultry Science 61, 18731878.CrossRefGoogle Scholar
Cole, C. B. & Fuller, R. (1984). British Poultry Science 25, 227231.CrossRefGoogle Scholar
Crawshaw, L. A. & Reid, J. S. G. (1984). Planta 160, 449454.CrossRefGoogle Scholar
D'Appolonia, B. L., Gilles, K. A., Osman, E. M. & Pomeranz, Y. (1971). In Wheat: Chemistry and Technology, pp. 301392 [Pomeranz, Y., editor]. St Paul, Minnesota: American Association of Cereal Chemists Inc.Google Scholar
Delpech, P., Guezel, M. & Leclercq, B. (1966). Revue Française des Corps Gras 10, 16.Google Scholar
De Silva, S., Hesselman, K. & Aman, P. (1983). Swedish Journal of Agricultural Research 13, 211219.Google Scholar
Eggum, B. O., Fekadu, M. & Wolstrup, J. (1979). Journal of the Science of Food and Agriculture 30, 177184.CrossRefGoogle Scholar
El Rayah Ahmed, A. & Labavitch, J. M. (1977). Journal of Food Biochemistry 1, 361365.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane-Stanley, G. H. (1957). Journal of Biological Chemistry 226, 497509.CrossRefGoogle Scholar
Griminger, P. & Fisher, H. (1966). Proceedings of the Society for Experimental Biology and Medicine 122, 551553.CrossRefGoogle Scholar
Hakansson, J. (1974). Swedish Journal of Agricultural Research 4, 3347.Google Scholar
Hedge, S. N., Rolls, B. A. & Coates, M. E. (1982). British Journal of Nutrition 48, 7380.Google Scholar
Hill, F. W. & Anderson, D. L. (1958). Journal of Nutrition 64, 587603.CrossRefGoogle Scholar
Imoto, S. & Namioka, S. (1978). Journal of Animal Science 47, 467478.CrossRefGoogle Scholar
Kay, R. M. (1982). Journal of Lipid Research 23, 221242.CrossRefGoogle Scholar
Keys, J. E., Van Soest, P. J. & Young, E. P. (1970). Journal of Animal Science 31, 11721177.CrossRefGoogle Scholar
Kibe, K., Tasaki, I. & Saito, M. (1964). Japanese Journal of Zootechnical Science 35, 159166.Google Scholar
Kratzer, F. H., Rajaguru, R. W. A. S. B. & Vohra, P. (1967). Poultry Science 46, 14891493.CrossRefGoogle Scholar
Lamport, D. T. A. (1969). Biochemistry 8, 11551163.CrossRefGoogle Scholar
Lamport, D. T. A., Katona, L. & Roerig, S. (1973). Biochemical Journal 133, 125131.CrossRefGoogle Scholar
Lamport, D. T. A. & Miller, D. H. (1971). Plant Physiology 48, 454456.CrossRefGoogle Scholar
Longe, O. G., Norton, G. & Lewis, D. (1982). Journal of the Science of Food and Agriculture 33, 155164.CrossRefGoogle Scholar
Mares, D. J. & Stone, B. A. (1973). Australian Journal of Biological Sciences 26, 793&812, 813&830.CrossRefGoogle Scholar
Matheson, N. K. & Saini, H. S. (1977). Phytochemistry 16, 5966.CrossRefGoogle Scholar
Morrison, I. M. (1972). Journal of the Science of Food and Agriculture 23, 455463.CrossRefGoogle Scholar
Nyman, M. & Asp, N. G. (1982). British Journal of Nutrition 47, 357366.CrossRefGoogle Scholar
Parker, D. S. (1976). British Journal of Nutrition 36, 6170.CrossRefGoogle Scholar
Parsons, C. M., Potter, L. M. & Brown, R. D. (1982). Poultry Science 61, 939946.CrossRefGoogle Scholar
Parsons, C. M., Potter, L. M. & Brown, R. D. (1983). Poultry Science 62, 483489.CrossRefGoogle Scholar
Ruppin, H., Bar-Meir, S., Soergel, K. H., Wood, C. M. & Schmitt, M. G. (1980). Gastroenterology 78, 15001507.CrossRefGoogle Scholar
Saeman, J. F., Moore, W. E., Mitchell, R. L. & Millet, M. A. (1954). Journal of the Technical Association of the Pulp and Paper Industry 37, 336343.Google Scholar
Sawardeker, J. S., Sloneker, J. H. & Jeanes, A. (1965). Analytical Chemistry 37, 16021604.CrossRefGoogle Scholar
Selvendran, R. R. (1978). Chemistry and Industry no. 12, 428430.Google Scholar
Selvendran, R. R. (1984). American Journal of Clinical Nutrition 39, 320337.Google Scholar
Sibbald, I. R. (1980 a). Poultry Science 59, 374377.CrossRefGoogle Scholar
Sibbald, I. R. (1980 b). Poultry Science 59, 836844.CrossRefGoogle Scholar
Terpstra, K. & de Hart, N. (1974). Zeitschrift für Tierphysiologie, Tierernáhrung und Futtermittelkunde 32, 306320.CrossRefGoogle Scholar
Titus, H. W. (1957). Cited by Vohra, P. (1972). World's Poultry Science Journal 28, 204214.Google Scholar
Tollier, M. T. & Riquet, A. M. (1980). In Les Polymères Végétaux: Polyméres Pariétaux et Alimentaires non Azotés, pp. 156175 [Monties, B. and Costes, C., editors]. Paris: Bordas.Google Scholar
Van Soest, P. J. (1984). Proceedings of the Nutrition Society 43, 2533.CrossRefGoogle Scholar
Van Soest, P. J. & Wine, R. H. (1967). Journal of the Association of Official Analytical Chemists 50, 5058.Google Scholar
von Vogt, H. & Stute, K. (1971). Archiv für Gejlügelkunde 35, 2935.Google Scholar
von Vogt, H. & Stute, K. (1974). Archiv für Gejlügelkunde 38, 117118.Google Scholar