Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T16:40:53.725Z Has data issue: false hasContentIssue false

The digestion of heat-damaged protein*

Published online by Cambridge University Press:  09 March 2007

M. C. Nesheim
Affiliation:
School of Agriculture, University of Cambridge
K. J. Carpenter
Affiliation:
School of Agriculture, University of Cambridge
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The apparent digestibilities for chicks, operated on so as to allow separate collection of urine and faeces, of the nitrogen in a heat-damaged cod flour (C35) and of a control, freezedried cod muscle (C23) were 77 and 90% respectively.

2. The differences are similar to those found for rats in earlier work and considerably smaller than the differences found in nutritional value of the materials as sources of either lysine or methionine for chicks.

3. Chicks killed 3 h after a test meal containing C23 showed little more N in their small intestine than did those on a N-free diet; other chicks receiving C35 showed much more N remaining in the gut.

4. It is hypothesized that significant quantities of heat-damaged protein may remain undigested in the small intestine, but may then be de-aminated by fermentation in the caecum so that values for the digestibility of N and of individual amino acids may be misleadingly high.

5. This hypothesis is supported by the finding that in caecectomized chicks the apparent digestibility of the N of C35 was only 68%, whereas the digestibility of C23 remained the same as in intact chicks.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1967

References

Association of Official Agricultural Chemists (1960). Official Methods of Analysis, 9th ed. Washington, D.C.: Association of Official Agricultural Chemists.Google Scholar
Baker, C. J. L. (1946). Poult. Sci. 25, 593.CrossRefGoogle Scholar
Barnes, R. H. & Kwong, E. (1964). In The Role of the Gastrointestinal Tract in Protein Metabolism, p. 41. [Munro, H. N., editor.] Oxford: Blackwell.Google Scholar
Benedict, S. R. & Franke, E. (1922). J. biol. Chem. 52, 387.CrossRefGoogle Scholar
Block, R. J. & Weiss, K.W. (1956). Amino Acid Handbook. Springfield, III.: Thomas.Google Scholar
Bose, S. (1944). Poult. Sci. 23, 130.Google Scholar
Carroll, R. W., Hensley, G. W. & Graham, W.R. Jr (1952). Science, N.Y. 115, 36.Google Scholar
Czarnocki, J., Sibbald, I. R. & Evans, E. V. (1961). Can. J. Anim. Sci. 41, 167.Google Scholar
Deshpande, P. D., Harper, A. E., Collins, M. & Elvehjem, C.A. (1957). Archs Biochem. Biophys. 67, 341.Google Scholar
Ekman, P., Emanuelson, H. & Fransson, A. (1949). K. LantbrHögsk. Annlr 16, 749.Google Scholar
Ford, J. E. (1962). Br. J. Nutr. 16, 409.CrossRefGoogle Scholar
Ford, J. E. (1965). Br. J. Nutr. 19, 277.CrossRefGoogle Scholar
Fox, M. R. S. & Briggs, G. M. (1960). J. Nutr. 72, 243.CrossRefGoogle Scholar
Francois, A. C. & Michel, M. (1964). In The Role of the Gastrointestinal Tract in Protein Metabolism, p. 239. [Munro, H. N., editor.] Oxford: Blackwell.Google Scholar
Harper, A. E. & De Muelenaere, H. J. H, (1961). Proc. int. Congr. Biochem. v. Moscow 8, 82.Google Scholar
Hill, F. W. & Anderson, D. L. (1958). J. Nutr. 64, 587.CrossRefGoogle Scholar
Kane, E. A., Jacobson, W. C. & Moore, L. A. (1950). J Nutr. 41, 583.Google Scholar
Katayama, T. (1924). Bull. imp. cent. agric. Exp. Stn Japan 3, 78.Google Scholar
Ma, T. S. & Zuazaga, G. (1942). Ind. Engng Chem. analyt. Edn 14, 280.Google Scholar
Melnick, D. & Oser, B. L. (1949). Fd Technol., Champaign 3, 57.Google Scholar
Meyer, J. H. (1956). J. Nutr. 58, 407.CrossRefGoogle Scholar
Miller, E. L., Carpenter, K. J. & Milner, C. K. (1965). Br. J. Nutr. 19, 547.Google Scholar
Miller, E. L., Carpenter, K. J., Morgan, C. B. & Boyne, A. W. (1965). Br. J. Nutr. 19, 249.Google Scholar
Newberne, P. M., Laerdal, O. A. & O'Dell, B. L. (1957). Poult. Sci. 36, 821.CrossRefGoogle Scholar
O'Dell, B. L., Woods, W. D., Laerdal, O.A, Jeffay, A. M. & Savage, J. E. (1960). Poult. Sci. 39, 426.Google Scholar
Ousterhout, L. E., Grau, C. R. & Lundholm, B. D. (1959). J. Nutr. 69, 65.CrossRefGoogle Scholar
Rao, M. N., Sreenivas, H., Swaminathan, M., Carpenter, K. J. & Morgan, C. B. (1963). J. Sci. Fd Agric. 14, 544.Google Scholar
Tasaki, I. & Okumura, J. (1964). J. Nutr. 83, 34.CrossRefGoogle Scholar
Warren, K.S. & Newton, W. L. (1959). Am. J. Physiol. 197, 717.CrossRefGoogle Scholar