Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T15:34:38.201Z Has data issue: false hasContentIssue false

Digestion of grass lipids and pigments in the sheep rumen

Published online by Cambridge University Press:  24 July 2007

R. M. C. Dawson
Affiliation:
Biochemistry Department, ARC Institute of Animal Physiology, Babraham, Cambridge
Norma Hemington
Affiliation:
Biochemistry Department, ARC Institute of Animal Physiology, Babraham, Cambridge
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Digestion of grass lipids and pigments in the rumen of the sheep has been studied during starvation and following the administration of 14C-labelled grass.

2. Both galactolipids contained in chloroplasts are rapidly degraded, although mono-galactosyldiglycerides disappear faster than digalactosyldiglycerides. It was concluded that rumen micro-organisms are mainly responsible for this degradation, although grass itself also contains enzymes which can degrade galactolipids.

3. Rumen contents can degrade added 14C-labelled mono- and digalactosyldiglycerides in vitro at a rate sufficient to account for the disappearance of galactolipids in the intact rumen. The initial enzyme attack is probably a successive deacylation to give monogalactosylglycerol and digalactosylglycerol.

4. Most of the chlorophyll pigments are rapidly converted into phaeophytins by loss of magnesium. A small proportion of chlorophyll a and more of chlorophyll b remains intact even after 24 h starvation. On the other hand, about half the phaeophytin undergoes further rapid decomposition to yield phylloerythrin.

5. Although the grass phospholipids are extensively degraded, β-carotenes and many non-polar compounds, e.g. steroids, appear to undergo little change in the rumen.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1974

References

REFERENCES

Allen, C. F., Good, P., Davis, H. F., Chisum, P. & Fowler, S. D. (1966). J. Am. Oil Chem. Soc. 43, 223.CrossRefGoogle Scholar
Bailey, R. W. (1962). Nature, Lond. 195, 79.CrossRefGoogle Scholar
Bailey, R. W. & Howard, B. H. (1963). Biochem. J. 87, 146.CrossRefGoogle Scholar
Bray, G. A. (1960). Analyt. Biochem. 1, 279.CrossRefGoogle Scholar
Conchie, J. & Levvy, G. A. (1957). Biochem. J. 65, 389.CrossRefGoogle Scholar
Cook, L. J., Scott, T. W., Faichney, G. J. & Lloyd-Davies, H. (1972). Lipids 7, 83.CrossRefGoogle Scholar
Czerkawski, J. W. (1967). Br. J. Nutr. 21, 599.CrossRefGoogle Scholar
Dawson, R. M. C. (1959). Nature, Lond. 183, 1822.CrossRefGoogle Scholar
Dawson, R. M. C. (1967 a). In Lipid Chromatographic Analysis p. 163 [Marinetti, G. V., editor]. New York: M. Dekker Inc.Google Scholar
Dawson, R. M. C. (1967 b). Biochem. J. 102, 205.CrossRefGoogle Scholar
Fisher, H. & Stadler, F. (1936). Hoppe-Seyler's Z. physiol. Chem. 239, 167.CrossRefGoogle Scholar
Garton, G. A. (1960). Nature, Lond. 187, 511.CrossRefGoogle Scholar
Garton, G. A. (1964). In Metabolism and Physiological Significance of Lipids p. 335 [Dawson, R. M. C. and Rhodes, D. N., editors’. London: John Wiley and Sons.Google Scholar
Garton, G. A., Hobson, P. N. & Lough, A. K. (1958). Nature, Lond. 182, 1511.CrossRefGoogle Scholar
Garton, G. A., Lough, A. K. & Vioque, E. (1961). J. gen. Microbiol. 25, 215.CrossRefGoogle Scholar
Grossbard, E. & Barton, G. E. (1963). Int. J. appl. Radiat. Isotopes 14, 517.CrossRefGoogle Scholar
Hansen, R. P. (1965). N.Z. Jl Sci. 8, 158.Google Scholar
Hansen, R. P. (1966). J. Dairy Res. 33, 333.CrossRefGoogle Scholar
Hawke, J. C. & Silcock, W. R. (1969). Biochem. J. 112, 131.CrossRefGoogle Scholar
Helmsing, P. J. (1969). Biochim. biophys. Acta 178, 519.CrossRefGoogle Scholar
Hoyt, P. B. (1964). The decomposition of plant chlorophyll and its derivatives in soil. Ph. D. Thesis, University of London.Google Scholar
Inman, O. L. & Rothemund, P. (1931). Science, N. Y. 74, 221.CrossRefGoogle Scholar
Jeffrey, S. W. (1961). Biochem. J. 80, 336.CrossRefGoogle Scholar
Kates, M. (1970). Adv. Lipid Res. 8, 225.CrossRefGoogle Scholar
Kepler, C. R., Tucker, W. P. & Tove, S. B. (1971). J. biol. Chem. 246, 2765.CrossRefGoogle Scholar
Lough, A. K. (1964). Biochem. J. 91, 584.CrossRefGoogle Scholar
Mangan, J. L. (1972). Br. J. Nutr. 27, 261.CrossRefGoogle Scholar
Mangan, J. L. & Pryor, M. J. (1968). J. Physiol., Lond. 200, 18P.Google Scholar
Patton, S. & Benson, A. A. (1966). Biochim. biophys. Acta 125, 22.CrossRefGoogle Scholar
Quin, J. I., Rimington, C. & Roets, G. C. S. (1935). Onderstepoort. J. Vet. Sci. 4, 463.Google Scholar
Reid, C. S. W., Lyttleton, J. W. & Mangan, J. L. (1962). N.Z. Jl agric. Res. 5, 237.CrossRefGoogle Scholar
Rimington, C. & Quin, J. I. (1933). Nature, Lond. 132, 178.CrossRefGoogle Scholar
Rook, J. A. F. (1969). Ann. N. Y. Acad. Sci. 162, 727.CrossRefGoogle Scholar
Roughan, P. G. & Batt, R. D. (1969). Phytochemistry 8, 363.CrossRefGoogle Scholar
Sastry, P. S. & Kates, M. (1964). Biochemistry, Easton 3, 1280.CrossRefGoogle Scholar
Shorland, F. B., Weenink, R. O., Johns, A. T. & McDonald, I. R. C. (1957). Biochem. J. 67, 328.CrossRefGoogle Scholar
Smith, J. H. C. & Benitez, A. (1955). In Modern Methods of Plant Analysis Vol. 4, p. 142 [Paech, K. and Tracey, L., editors’. New York: Springer-Verlag.Google Scholar
Subba Rao, K. & Pieringer, R. A. (1970). J. Neurochem. 17, 483.Google Scholar
Trevelyan, W. E., Procter, D. P. & Harrison, J. S. (1950). Nature, Lond. 166, 444.CrossRefGoogle Scholar
Vorbeck, M. L. & Marinetti, G. V. (1965). J. Lipid Res. 6, 3.CrossRefGoogle Scholar
Warner, A. C. (1956). J. gen. Microbiol. 14, 733.CrossRefGoogle Scholar
West, J. & Mangan, J. L. (1972). Proc. Nutr. Soc. 31, 108A.Google Scholar
Wright, D. E. (1959). Nature, Lond. 184, 875.CrossRefGoogle Scholar