Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T20:20:45.990Z Has data issue: false hasContentIssue false

Digestion of complex carbohydrates and large bowel fermentation in rats fed on raw and cooked peas (Pisum sativum)

Published online by Cambridge University Press:  09 March 2007

J. S. Goodlad
Affiliation:
Department of Agricultural Biochemistry and Nutrition, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU
J. C. Mathers
Affiliation:
Department of Agricultural Biochemistry and Nutrition, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Rats were fed on four semi-purified diets in which raw or cooked peas (Pisum sativum var. Sentinel) provided 250 or 500 g/kg diet. Pressure-cooking of peas followed by rapid freezing and freeze-drying increased the proportion of starch resistant to α-amylase (EC 3.2.1.1) without previous treatment with dimethyl sulphoxide. There were only minor effects of cooking on the digestibilities of non-starch polysaccharides and their constituent sugars. With the higher dietary pea concentration there were marked increases in the flow of organic matter to, and fermentation in, the large bowel. These increases were associated with significant increases in colonic tissue and contents weights, and in colonic transit time. Both cooking and dietary pea inclusion rate altered the pattern of volatile fatty acids in caecal contents and in portal blood.

Type
Effects of Complex Carbohydrates in the Large Bowel
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Bach Knudsen, K. E., Munck, L. & Eggum, B. O. (1988). Effect of cooking, pH and polyphenol level on carbohydrate composition and nutritional quality of a sorghum (Sorghum bicolor (L.) Moench) food, ugah. British Journal of Nutrition 59, 3147.CrossRefGoogle Scholar
Björck, I., Nyman, M. & Asp, N.-G. (1984) Extrusion cooking and dietary fiber: effects on dietary fiber content and on degradation in the rat intestinal tract. Cereal Chemistry 61, 174179.Google Scholar
Cheng, B.-Q., Trimble, R. P., Illman, R. J., Stone, B. A. & Topping, D. L. (1987) Comparative effects of dietary wheat bran and its morphological components (aleurone and pericarp-seed coat) on volatile fatty acid concentrations in the rat. British Journal of Nutrition 57, 6976.CrossRefGoogle ScholarPubMed
Collings, P., Williams, C. & Macdonald, I. (1981) Effects of cooking on serum glucose and insulin responses to starch. British Medical Journal 282, 1032.CrossRefGoogle ScholarPubMed
Collinson, R. (1968). Starch retrogradation. In Starch and Its Derivatives, pp. 194202 [Radley, J. A. editor]. London: Chapman & Hall.Google Scholar
Cummings, J. H. (1984) Microbial digestion of complex carbohydrates in man. Proceedings of the Nutrition Society 43, 3544.CrossRefGoogle ScholarPubMed
Cummings, J. H. & Englyst, H. N. (1987) Fermentation in the human large intestine and the available substrates. American Journal of Clinical Nutrition 45, 1243 1255.Google Scholar
Demeyer, D. I. & Van Nevel, C. J. (1975). Methanogenesis, an integrated part of carbohydrate fermentation, and its control. In Digestion and Metabolism in the Ruminant, pp. 366382 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale: University of New England Publishing Unit.Google Scholar
Englyst, H. N. & Cummings, J. H. (1984) Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as the alditol acetates. Analyst 109, 937942.CrossRefGoogle Scholar
Englyst, H. N. & Cummings, J. H. (1985) Digestion of the polysaccharides of some cereal foods in the human small intestine. American Journal of Clinical Nutrition 42, 778787.CrossRefGoogle ScholarPubMed
Englyst, H. N. & Cummings, J. H. (1987). Resistant starch, a ‘new’ food component: a classification of starch for nutritional purposes. In Cereals in a European Context, pp. 221233 [Morton, I. D. editor]. Chichester: Ellis Horwood Ltd.Google Scholar
Englyst, H. N. & Kingman, S. M. (1990). Dietary fiber and resistant starch. A nutritional classification of plant polysaccharides. In Dietary Fiber, pp. 4965 [Kritchevsky, D., Bonfield, C.and Anderson, J. W., editors]. New York: Plenum Publishing Corporation.CrossRefGoogle ScholarPubMed
Fadel, J. G., Newman, C. W., Newman, R. K. & Graham, H. (1988) Effects of extrusion cooking of barley on ileal and fecal digestibilities of dietary components in pigs. Canadian Journal of Animal Science 68, 891897.CrossRefGoogle Scholar
Fadel, J. G., Newman, R. K., Newman, C. W. & Graham, H. (1989) Effects of baking hulless barley on the digestibility of dietary components as measured at the ileum and in the feces in pigs. Journal of Nutrition 119, 722726.CrossRefGoogle ScholarPubMed
Faulks, R. M., Southon, S. & Livesey, G. (1989). Utilization of α-amylase (EC 3.2.1.1) resistant maize and pea (Pisum sativum) starch in the rat. British Journal of Nutrition 61, 291300.CrossRefGoogle ScholarPubMed
Gee, J. M. & Johnson, I. T. (1985) Rates of starch hydrolysis and changes in viscosity in a range of common foods subjected to simulated digestion in vitro. Journal of the Science of Food and Agriculture 36, 614620.CrossRefGoogle Scholar
Goodlad, J. S. (1989) Digestion and large intestinal fermentation of pea (Pisum sativum) carbohydrates. PhD Thesis, University of Newcastle upon Tyne.Google Scholar
Goodlad, J. S. & Mathers, J. C. (1988) Effects of food carbohydrates on large intestinal fermentation in vitro. Proceedings of the Nutrition Society 47, 176A.Google Scholar
Goodlad, J. S. & Mathers, J. C. (1990). Large bowel fermentation in rats given diets containing raw peas (Pisum sativum). British Journal of Nutrition 64, 569587.CrossRefGoogle ScholarPubMed
Goodlad, J. S. & Mathers, J. C. (1991). Digestion by pigs of non-starch polysaccharides in wheat and raw peas (Pisum sativum) fed in mixed diets. British Journal of Nutrition 65, 259270.CrossRefGoogle ScholarPubMed
Grant, G., More, L. J., McKenzie, N. H., Stewart, J. C. & Pusztai, A. (1983) Survey of the nutritional and haemagglutination properties of legume seeds generally available in the UK. British Journal of Nutrition 50, 207214.CrossRefGoogle ScholarPubMed
Holm, J., Lundquist, I., Björck, I., Eliasson, A.-C. & Asp, N.-G. (1988) Degree of starch gelatinization, digestion rate of starch in vitro, and metabolic response in rats. American Journal of Clinical Nutrition 47, 10101016.CrossRefGoogle ScholarPubMed
Huisman, J., Van der Poel, A. F., B., Van, Leeuwen, P. & Verstegen, M. W. A. (1990). Comparison of growth, nitrogen metabolism and organ weights in pigs and rats fed on diets containing Phaseolus vulgaris beans. British Journal of Nutrition 64, 743753.CrossRefGoogle ScholarPubMed
Key, F. B. & Mathers, J. C. (1987) Response of rat caecal metabolism to varying proportions of white and wholemeal bread. Proceedings of the Nutrition Society 46, 11A.Google Scholar
Key, F. B. & Mathers, J. C. (1988) Response of rat caecal metabolism to white and wholemeal breads given at two fat levels. Proceedings of the Nutrition Society 47, 101A.Google Scholar
Key, F. B. & Mathers, J. C. (1990). Estimation of the digestibilities of NSP for wholemeal bread and haricot beans fed in mixed diets. In Dietary Fibre: Chemical and Biological Aspects, pp. 254258 [Southgate, D.A. T., Waldron, K., Johnson, I. T. and Fenwick, G. R., editors]. Cambridge: Royal Society of Chemistry.Google Scholar
Liener, I. E. & Kakade, M. L. (1980). Protease inhibitors. In Toxic Constituents of Plant Foodstuffs, pp. 771 [I. E. Liener, editor]. New York: Academic Press.Google Scholar
Lloyd, B., Burrin, J., Smythe, P. & Alberti, K. G. M. M. (1978) Enzymic fluorometric continuous flow assays for blood glucose, lactate, pyruvate, alanine, glycerol and 3-hydroxybutyrate. Clinical Chemistry 34, 17241729.CrossRefGoogle Scholar
Longstaff, M. & McNab, J. M. (1987) Digestion of starch and fibre carbohydrates in peas by adult cockerels. British Poultry Science 28, 261285.CrossRefGoogle ScholarPubMed
Macfarlane, G. T. & Englyst, H. N. (1986) Starch utilization by the human large intestinal microflora. Journal of Applied Bacteriology 60, 195201.CrossRefGoogle ScholarPubMed
Mathers, J. C. (1991) Digestion of non-starch polysaccharides by non-ruminant omnivores. Proceedings of the Nutrition Society 50, 161172.CrossRefGoogle ScholarPubMed
Mathers, J. C. & Dawson, L. D. (1991) Large bowel fermentation in rats eating processed potatoes. British Journal of Nutrition 66, 313329.CrossRefGoogle ScholarPubMed
Mathers, J. C., Fernandez, F., Hill, M. J., McCarthy, P. T., Shearer, M. J. & Oxley, A. (1990) Dietary modification of potential vitamin K supply from enteric bacterial menaquinones in rats. British Journal of Nutrition 63, 639652.CrossRefGoogle ScholarPubMed
Mathers, J. C. & Finlayson, H. J. (1989) Manipulation of rat caecal metabolism by including Avoparcin and pectin in the diet. Proceedings of the Nutrition Society 48, 139A.Google Scholar
O'Dea, K., Snow, P. & Nestel, P. (1981) Rate of starch hydrolysis in vitro as a predictor of metabolic responses to complex carbohydrate in vivo. American Journal of Clinical Nutrition 34, 19911993.CrossRefGoogle ScholarPubMed
Orford, P. D., Ring, S. G., Carroll, V., Miles, M. J. & Morris, V. J. (1987) The effect of concentration and botanical source on the gelation and retrogradation of starch. Journal of the Science of Food and Agriculture 39, 169177.CrossRefGoogle Scholar
Ørskov, E. R., Frazer, C., Mason, V. C. & Mann, S. O. (1970) Influence of starch digestion in the large intestine of sheep on caecal fermentation, caecal microflora and faecal nitrogen excretion. British Journal of Nutrition 24, 671682.CrossRefGoogle ScholarPubMed
Paul, A. A. & Southgate, D. A. T. (1978) McCance and Widdowson's The Composition of Foods. 4th revised ed. London: H.M. Stationery Office.Google Scholar
Pedroso, L. M. R., Mathers, J. C. & Finlayson, H. J. (1990) Effect of raw peas on activities of key enzymes of lipid and carbohydrate metabolism in rat liver. Proceedings of the Nutrition Society 49, 52A.Google Scholar
Ridgman, W. J. (1975) Experimentation in Biology. Glasgow and London: Blackie.Google Scholar
Russell, J. B. & Hespell, R. B. (1981) Microbial rumen fermentation. Journal of Dairy Science 64, 11531169.CrossRefGoogle ScholarPubMed
Sharon, N. & Halina, L. (1972) Lectins; cell-agglutinating and sugar specific proteins. Science 177, 949959.CrossRefGoogle ScholarPubMed
Tappy, L., Würsch, P., Randin, J. P., Felber, J. P. & Jéquier, E. (1986) Metabolic effect of pre-cooked instant preparations of bean and potato in normal and in diabetic subjects. American Journal of Clinical Nutrition 43, 3036.CrossRefGoogle ScholarPubMed
Thompson, A. (1970) Rat metabolism cage. Journal of the Institute of Animal Technicians 21, 1221.Google Scholar
Thorne, M. J., Thompson, L. U. & Jenkins, D. J. A. (1985) Factors affecting starch digestibility and the glycemic response with special reference to legumes. American Journal of Clinical Nutrition 38, 481488.CrossRefGoogle Scholar
Waldron, K. W. & Selvendran, R. R. (1990). Changes in dietary fibre polymers during storage and cooking. In Dietary Fibre: Chemical and Biological Aspects, pp. 4449 [Southgate, D. A. T., Waldron, K., Fenwick, I. T. and Johnson, G. R., editors]. Cambridge: Royal Society of Chemistry.Google Scholar
Würsch, P., Del Vedovo, S. & Koellreulter, B. (1986) Cell structure and starch nature as key determinants of the digestion rate of starch in legumes. American Journal of Clinical Nutrition 43, 2529.CrossRefGoogle Scholar
Wyatt, G. M. & Horn, N. (1988) Fermentation of resistant food starches by human and rat intestinal bacteria. Journal of the Science of Food and Agriculture 44, 281288.CrossRefGoogle Scholar
Wyatt, G. M., Horn, N., Gee, J. M. & Johnson, I. T. (1988) Intestinal microflora and gastrointestinal adaptation in the rat in response to non-digestible dietary polysaccharides. British Journal of Nutrition 60, 197207.CrossRefGoogle ScholarPubMed