Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T09:42:33.379Z Has data issue: false hasContentIssue false

Differences in tissue fatty acid composition between reared and wild sharpsnout sea bream, Diplodus puntazzo (Cetti, 1777)

Published online by Cambridge University Press:  09 March 2007

F. M. Rueda
Affiliation:
Centro de Investigación y Desarrollo Agroalimentario - Acuicultura, “Consejería de Medio Ambiente, Agricultura y Agua de la Región de Murcia”, Apdo. 65, 30740-San Pedro del Pinatar, Murcia, Spain
M. D. Hernández
Affiliation:
Centro de Investigación y Desarrollo Agroalimentario - Acuicultura, “Consejería de Medio Ambiente, Agricultura y Agua de la Región de Murcia”, Apdo. 65, 30740-San Pedro del Pinatar, Murcia, Spain
M. A. Egea
Affiliation:
Centro de Investigación y Desarrollo Agroalimentario - Acuicultura, “Consejería de Medio Ambiente, Agricultura y Agua de la Región de Murcia”, Apdo. 65, 30740-San Pedro del Pinatar, Murcia, Spain
F. Aguado
Affiliation:
Centro de Investigación y Desarrollo Agroalimentario - Acuicultura, “Consejería de Medio Ambiente, Agricultura y Agua de la Región de Murcia”, Apdo. 65, 30740-San Pedro del Pinatar, Murcia, Spain
B. García
Affiliation:
Centro de Investigación y Desarrollo Agroalimentario - Acuicultura, “Consejería de Medio Ambiente, Agricultura y Agua de la Región de Murcia”, Apdo. 65, 30740-San Pedro del Pinatar, Murcia, Spain
F. J. Martínez*
Affiliation:
Department of Physiology and Pharmacology, Faculty of Biology, University of Murcia, Campus of Espinardo, 30100-Murcia, Spain
*
*Corresponding author Dr. F. J. Martinez, fax +34 68 363963, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The fatty acid composition and lipid content of white muscle, liver and mesenteric fat, in reared v. wild sharpsnout sea bream (Diplodus puntazzo) were compared. The mesenteric fat index (100×mesenteric fat weight/body weight) and the lipid contents of both white muscle and liver proved consistently higher in farmed v. wild sharpsnout sea bream (79·0 (SE 13·1) V. 38·7 (se 5·1) g/kg, 188·4 (se 30·0) v. 58·2 (se 3·9) g/kg and 27·2 (se 3·7) v. 17·3 (se 1·9) g/kg, respectively). The higher values of linoleic, eicosapentaenoic, docosahexaenoic and n-3 series acids in reared fish muscle make reared sharpsnout more favourable for human consumption. In reared fish mesenteric fat, polyunsaturated fatty acids reached higher levels (32·54 (se 0·71) g/100 g total fatty acids than those found in wild fish (26·08 (se 1·38) g/100 g total fatty acids or even present in the diet (28·34 g/100 g total fatty acids). Compared with cultured fish, wild sharpsnout displayed a higher content of n-3 fatty acids in liver fat (31·67 (se 1·13) g/100 g total fatty acids), but lower in mesenteric fat (20·35 (se 1·41) g/100 g total fatty acids). Atherogenic index values were similar for wild and reared fish in all tissues, while the index of thrombogenicity of muscle and mesenteric fat (0·353 (se 0·012) and 0·402 (se 0·021) respectively) was significantly increased in wild fish probably due to the omnivorous habits of the species and/or to seasonal food variations. Depending on the time of the year or the season, reared fish could be more suitable for human consumption than wild fish.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2001

References

Referenses

Ackman, RG (1989) Nutritional composition on fats in seafood. Progress in Food and Nutrition Science 13, 161241.Google Scholar
Ackman, RG (1992) Fatty acids in fish and shellfish. In Fatty acids in Foods and Their Health Implications, pp. 169184 [Ch Kuang, Chow, editor]. New York, NY: Marcel Dekker, Inc.Google Scholar
Ackman, RG & Takeuchi, T (1986) Comparison of fatty acids and lipids of smolting hatchery-fed and wild Atlantic salmon (Salmo salar). Lipids 21, 117120.CrossRefGoogle ScholarPubMed
Arzel, J, Martínez-López, FJ, Métailler, R, Stéphan, G, Viau, M, Gandemer, G & Guillaume, J (1994) Effect of dietary lipid on growth performance and body composition of brown trout (Salmo trutta). Aquaculture 123, 361375.CrossRefGoogle Scholar
Divanach, P, Kentouri, M, Charalambakis, G, Pouget, F, Sterioti, A (1993) Comparison of growth performance of six Mediterranean fish species reared under intensive farming conditions in Crete (Greece), in raceways with the use of self-feeders. In Production, Environment and Quality. Bordeaux Aquaculture '92. European Aquaculture Society Special Publication no. 18, pp. 285297. [Barnabé, G and Keshmont, P, editors]. Ghent: European Aquaculture Society.Google Scholar
Folch, J, Lees, M & Sloane-Stanley, GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry 226, 497509.CrossRefGoogle ScholarPubMed
Greene, DHS & Selivonchick, DP (1987) Lipid metabolism in fish. Progress in Lipid Research 26, 5385.CrossRefGoogle ScholarPubMed
Hardy, SW & King, IB (1989) Variation in n-3 fatty acid content of fresh and frozen salmon. Omega 3 News 4, 14.Google Scholar
Harris, SW (1989) Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review. Journal of Lipid Research 30, 785807.CrossRefGoogle ScholarPubMed
Henderson, IW & Tocher, DR (1987) The lipid composition and biochemistry of freshwater fish. Progress in Lipid Research 26, 281347.CrossRefGoogle ScholarPubMed
Jezierska, B, Hazel, J & Gerking, S (1982) Lipid mobilization during starvation in the rainbow trout, Salmo gairdneri Richardson, with attention to fatty acids. Journal of Fish Biology 21, 681692.CrossRefGoogle Scholar
Kiessling, A, Johansson, L & Storebakken, T (1989) Effects of reduced feed ration levels on fat content and fatty acid composition in white and red muscle from rainbow trout. Aquaculture 79, 169175.CrossRefGoogle Scholar
Krajnovic-Ozretic, M, Nadjek, M & Ozretic, B (1994) Fatty acids in liver and muscle of farmed and wild sea bass (Dicentrarchus labrax L.). Comparative Biochemistry and Physiology 109A, 611617.CrossRefGoogle Scholar
Lie, O & Huse, I (1992) The effect of starvation on the composition of Atlantic salmon (Salmo salar). Fiskeridirektoratets Skrifter. Serie Ernaering 5, 1116.Google Scholar
Orban, E, Di Lena, G, Ricelli, A, Paoletti, F, Casini, I, Gambelli, L & Caproni, R (2000) Quality characteristics of sharpsnout sea bream (Diplodus puntazzo) from different intensive rearing systems. Food Chemistry 70, 2732.CrossRefGoogle Scholar
Pérez-Llamas, F, López-Jiménez, JA, Marín, JF & Zamora, S (1998) Características de la grasa de algunos alimentos del grupo de las carnes y su relación con la salud (Lipids characteristics of some meat food and its relations with the human health status). Nutrición Hospitalaria XIII, 9598.Google Scholar
Rueda, FM, López, JA, Martínez, FJ & Zamora, S (1997) Fatty acids in muscle of wild and farmed red porgy, Pagrus pagrus. Aquaculture Nutrition 3, 161165.CrossRefGoogle Scholar
Sala, E & Ballesteros, E (1997) Partitioning of space and food resources by three fish of the genus Diplodus (Sparidae) in a Mediterranean rocky infralittoral ecosystem. Marine Ecology Progress Series 152, 273283.CrossRefGoogle Scholar
Shearer, KD (1994) Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture 119, 6388.CrossRefGoogle Scholar
Sheridan, MA (1988) Lipid dynamics of fish: Aspects of absorption, transportation, deposition and mobilization. Comparative Biochemistry and Physiology 90B, 679690.Google Scholar
Sheridan, MA (1989) Alterations in lipid metabolism accompanying smoltification and seawater adaptation of salmonid fish. Aquaculture 82, 191203.CrossRefGoogle Scholar
Sheridan, MA (1994) Regulation of lipid metabolism in poikilothermic vertebrates. Comparative Biochemistry and Physiology 107B, 495508.Google Scholar
Stoffel, W, Chu, F & Ahrens, EH Jr (1959) Analysis of long chain fatty acids by gas-liquid chromatography. Analytical Chemistry 31, 307308.CrossRefGoogle Scholar
Tornaritis, M, Peraki, E, Georgulli, M, Kafatos, A, Charalambakis, G, Divanach, P, Kentouri, M, Yiannopoulos, S, Frenaritou, H & Argyrides, R (1993) Fatty acid composition and total fat content of eight species of Mediterranean fish. International Journal of Food Sciences and Nutrition 45, 135139.CrossRefGoogle Scholar
Trigari, G, Pirini, M, Ventrella, V, Trombetti, F & Pagliarani, A (1997) Muscle fatty acids in wild and farmed gilthead. Biologia Marino Mediterraneo 4, 346347.Google Scholar
Ulbricht, TLV & Southgate, DAT (1991) Coronary heart disease: seven dietary factors. Lancet 338, 985992.CrossRefGoogle ScholarPubMed
Yu, TC & Sinnhuber, RO (1981) Use of beef tallow as an energy source in coho salmon (Oncorhynchus kisutch) rations. Journal of Fisheries Research Board of Canada 38, 367370.Google Scholar
Zlatanos, S & Sagredos, AN (1993) The fatty acids composition of some important Mediterranean fish species. Fat Science and Technology 2, 6669.Google Scholar