Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T03:02:47.908Z Has data issue: false hasContentIssue false

Dietary inulin intake and age can significantly affect absorption of the faecal marker dysprosium in rats

Published online by Cambridge University Press:  08 March 2007

Charles Coudray*
Affiliation:
Centre de Recherche en Nutrition Humaine d'Auvergne, Unité Maladies Métaboliques et Micro-nutrimentsINRA, Theix63122 St Genès Champanelle, France
Christine Feillet-Coudray
Affiliation:
Centre de Recherche en Nutrition Humaine d'Auvergne, Unité Maladies Métaboliques et Micro-nutrimentsINRA, Theix63122 St Genès Champanelle, France
Yves Rayssiguier
Affiliation:
Centre de Recherche en Nutrition Humaine d'Auvergne, Unité Maladies Métaboliques et Micro-nutrimentsINRA, Theix63122 St Genès Champanelle, France
*
*Corresponding author: Dr Charles Coudray, fax +33 4 73 62 46 38, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is believed that rare earth elements are not absorbed, and thus they are generally used in some mineral absorption studies as a faecal marker. The aim of the present study was to determine the effect of inulin intake and age on dysprosium (Dy) absorption in rats. Eighty male Wistar rats of four different ages (2, 5, 10 and 20 months) were randomised into either a control group or a group receiving 3·75% inulin in their diet for 4d and then 7·5% inulin until the end of the study. The animals were fed fresh food and water ad libitum for 30d. The intestinal absorption of Dy was determined from a 4d (day 21 to day 25) balance study. Mean faecal Dy recovery (%) in the eight groups (3 months control, 3 months inulin, 6 months control, 6 months inulin, 11 months control, 11 months inulin, 21 months control, 21 months inulin) was 94·0 (sd 8·6), 64·8 (sd 10·1), 95·8 (sd 9·4), 81·5 (sd 12·1), 98·4 (sd 9·8), 87·8 (sd 9·5), 97·8 (sd 6·2) and 84·9 (sd 10·9), respectively. Our results showed clearly that dietary inulin intake decreased faecal Dy recovery in all four rat groups, and faecal Dy recovery was significantly higher in the old rats (10 and 20 months) than in the young and adult rats. These results show that the faecal recovery (or intestinal absorption) of Dy may vary greatly with nutritional or physiological states such as inulin intake or age. The use of rare earth elements as a faecal marker should be thus validated under each nutritional or physiological state before being employed in mineral absorption studies.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2006

References

Campbell, JM, Fahey, GC Jr & Wolf, BWSelected indigestible oligosaccharides affect large bowel mass, cecal and fecal shortchain fatty acids, pH and microflora in rats. J Nutr 1997 127, 130136.CrossRefGoogle ScholarPubMed
Coudray, C, Bousset, C, Tressol, JC, Pepin, D & Rayssiguier, YShort-term ingestion of chlorogenic or caffeic acids decreases zinc but not copper absorption in rats, utilization of stable isotopes and inductively-coupled plasma mass spectrometry technique. Br J Nutr 1998 80, 575584.CrossRefGoogle Scholar
Coudray, C, Demigne, C & Rayssiguier, YEffects of dietary fibers on magnesium absorption in animals and humans. J Nutr 2003 133, 14.CrossRefGoogle Scholar
Coudray, C, Feillet-Coudray, C, Gueux, E, Mazur, A & Rayssignuier, YEffect of inulin intake on intestinal absorption of zinc and copper in rats at different ages: a stable isotope study. J Nutr (In the Press). 2005aCrossRefGoogle Scholar
Coudray, C, Rambeau, M, Feillet-Coudray, C, Tressol, JCDemigne, C, Gueux, E, Mazur, A & Rayssignuier, YThe efficiency of intestinal calcium absorption is greater under inulin intake in aged rats than in young or adult rats: a stable isotope approach. J Nutr (In the Press). 2005bCrossRefGoogle ScholarPubMed
Crooker, BAClark, JH & Shanks, RDRare earth elements as markers for rate of passage measurements of individual feedstuffs through the digestive tract of ruminants. J Nutr 1982 112, 13531361.CrossRefGoogle ScholarPubMed
Durbin, PWWilliams, MH, Gee, M, Newman, RH & Hamilton, JG (1956) Metabolism of the lanthanons in the rat. Proc Soc Exp Biol Med 91, 7885.CrossRefGoogle ScholarPubMed
Fairweather-Tait, SJ & Dainty, JUse of stable isotopes to assess the bioavailability of trace elements: a review Food Addit Contam 2002 19, 939947.CrossRefGoogle ScholarPubMed
Fairweather-Tait, SJMinihane, AM, Eagles, J, Owen, L & Crews, HMRare earth elements as nonabsorbable fecal markers in studies of iron absorption. Am J Clin Nutr 1997 65, 970976.CrossRefGoogle ScholarPubMed
Harvey, LJ, Majsak-Newman, G, Dainty, JR, Wharf, SG, Reid, MD, Beattie, JH, & Fairweather-Tait, SJHolmium as a faecal marker for copper absorption studies in adults. Clin Sci (Lond) 2002 102, 233240.CrossRefGoogle ScholarPubMed
Hutcheson, DP, Venugopal, B, Gray, DH & Luckey, TLanthanide markers in a single sample for nutrient studies in humans. J Nutr 1979 109 702707.CrossRefGoogle Scholar
Jandacek, RJ, Heubi, JE, & Tso, PA novel, noninvasive method for the measurement of intestinal fat absorption. Gastroenterology 2004 127 139144.CrossRefGoogle ScholarPubMed
Kaur, N & Gupta, AKApplications of inulin and oligofructose in health and nutrition J Biosci 2002 27 703714.CrossRefGoogle ScholarPubMed
Levrat, MA, Remesy, C & Demigne, CHigh propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J Nutr 1991 121, 17301737.Google ScholarPubMed
Lopez, HW, Coudray, C, Bellanger, J, Younes, H, Demigne, C & Remesy, CIntestinal fermentation lessens the inhibitory effects of phytic acid on mineral utilization in rats. J Nutr 1998 128, 11921198.CrossRefGoogle ScholarPubMed
Lupton, JR & Kurtz, PPRelationship of colonic luminal shortchain fatty acids and pH to in vivo cell proliferation in rats. J Nutr 1993 123, 15221530.CrossRefGoogle ScholarPubMed
Matsui, T, Okumura, H & Yano, HAbsorption of zinc from dietary casein phosphopeptide complex with zinc in rats given a soybean protein-based diet. J Nutr Sci Vitaminol (Tokyo) 2002 48, 247250.CrossRefGoogle Scholar
Mellon, FA & Fairweather-Tait, SJStable isotope methods for studying nutrient mineral metabolism in humans. Endeavour 1997 21, 1218.CrossRefGoogle ScholarPubMed
Ohta, A, Ohtsuki, M, Baba, S, Adachi, T, Sakata, T & Sakaguchi, ECalcium and magnesium absorption from the colon and rectum are increased in rats fed fructooligosaccharides. J Nutr 1995 125, 24172424.CrossRefGoogle ScholarPubMed
Patterson, KY & Veillon, CStable isotopes of minerals as metabolic tracers in human nutrition research. Exp Biol Med (Maywood) 2001 226, 271282.CrossRefGoogle ScholarPubMed
Sakata, TStimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. Br J Nutr 1987 58, 95103.CrossRefGoogle ScholarPubMed
Saltzman, JR & Russell, RMThe aging gut. Nutritional issues. Gastroenterol Clin North Am 1998 27, 309324.CrossRefGoogle ScholarPubMed
Scholz-Ahrens, KE & Schrezenmeir, J (2002) Inulin, oligofructose and mineral metabolism – experimental data and mechanism. Br J Nutr 87, Suppl 2, S179S186.CrossRefGoogle ScholarPubMed
Schuette, SA, Janghorbani, M, Cohen, MB, Krug, S, Schindler, T, Wagner, DA & Morris, SJDysprosium chloride as a nonabsorbable gastrointestinal marker for studies of stable isotope-labeled triglyceride excretion in man.. J Am Coll Nutr 2003 22, 379387.CrossRefGoogle ScholarPubMed
Schuette, SA, Janghorbani, M, Young, VR & Weaver, CMDysprosium as a nonabsorbable marker for studies of mineral absorption with stable isotope tracers in human subjects. J Am Coll Nutr 1993 12, 307315.CrossRefGoogle ScholarPubMed
Sian, L, Mingyan, X, Miller, LV,Tong, L, Krebs, NF & Hambidge, KMZinc absorption and intestinal losses of endogenous zinc in young Chinese women with marginal zinc intakes. Am J Clin Nutr 1996 63, 348353.CrossRefGoogle ScholarPubMed
Sobotka, L, Bratova, M, Slemrova, M, Manak, J, Vizd’a, J & Zadak, Z. 1997 Inulin as the soluble fiber in liquid enteral nutrition. Nutrition 13, 2125.CrossRefGoogle ScholarPubMed
Sullivan, MF, Miller, BM & Goebel, JCGastrointestinal absorption of metals (51Cr, 65Zn, 95mTc, 109Cd, 113Sn, 147Pm, and 238Pu) by rats and swine. Environ Res 1984 35, 439453.CrossRefGoogle ScholarPubMed
Sullivan, MF, Ruemmler, PS, Ryan, JL & Buschbom, RLInfluence of oxidizing or reducing agents on gastrointestinal absorption of U, Pu, Am, Cm and Pm by rats.. Health Phys 1986 50, 439453.CrossRefGoogle ScholarPubMed
Tahiri, M, Tressol, JC, Arnaud, J, et, alFive-week intake of short-chain fructo-oligosaccharides increases intestinal absorption and status of magnesium in postmenopausal women. J Bone Miner Res 2001 16, 21522160.CrossRefGoogle ScholarPubMed
Tahiri, M, Tressol, JC, Arnaud, J, et, alEffect of short-chain fructooligosaccharides on intestinal calcium absorption and calciumstatus in postmenopausal women: a stable-isotope study. Am J Clin Nutr 2003 77, 449457.CrossRefGoogle ScholarPubMed
Ten Bruggencate, SJ, Bovee-Oudenhoven, IM, Lettink-Wissink, ML, & Van der Meer, R 2005 Dietary fructooligosaccharides increase intestinal permeability in rats. J Nutr 135, 837842.CrossRefGoogle ScholarPubMed
Ulusoy, U & Whitley, JEProfiles of faecal output of rare earth administration. Br J Nutr 2000 84, 605617.CrossRefGoogle ScholarPubMed
Van Loo, J, Cummings, J, Delzenne, N & et, alFunctional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br J Nutr 1999 81, 121132.Google ScholarPubMed
Zhao, Z, Egashira, Y & Sanada, HDigestion and absorption of ferulic acid sugar esters in rat gastrointestinal tract. J Agric Food Chem 2003 51, 55345539.CrossRefGoogle ScholarPubMed