Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T01:13:39.934Z Has data issue: false hasContentIssue false

Determination of protein and reactive lysine in leaf-protein concentrates by dye-binding

Published online by Cambridge University Press:  09 March 2007

Ann F. Walker
Affiliation:
Department of Food Science, University of Reading, London Road, ReadingRG1 5AQ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Twenty leaf-protein concentrates (LPC), were produced from different crops and by different processes, the latter being designed to retain maximum nutritional value of the samples.

2. The establishment of conditions for the use of CI Acid Orange 12 in a commercial dye-buffer reagent for the determination of protein and reactive (available) lysine in LPC was investigated.

3. Values for protein by dye-binding correlated well with those for tungstic-acid-precipitated nitrogen (×6.25).

4. Some LPC samples showed a loss of reactive lysine, the greatest loss being associated with the most severe processing conditions.

5. For the LPC samples studied, dye-binding provided a convenient method for the concurrent determination of protein and reactive lysine.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Allison, R. M., Laird, W. M. & Synge, R. L. M. (1973). Br. J. Nutr. 29, 51.CrossRefGoogle Scholar
Byers, M. (1971 a). J. Sci. Fd Agric. 22, 242.CrossRefGoogle Scholar
Byers, M. (1971 b). In Leaf Protein: its Agronomy, Preparation, Qualify and Use, IBP Handbook no. 20, p. 95 [Pirie, N. W., editor]. Oxford: Blackwell Scientific Publications Ltd.Google Scholar
Carpenter, K. J. (1974). In Nutrients in Processed Foods – Proteins, p. 99 [White, P. L. and Fletcher, D. C., editors]. Acton, Massachusetts: Publishing Sciences Group Inc.Google Scholar
Carpenter, K. J. & Booth, V. H. (1973). Nutr. Abst. Rev. 43, 424.Google Scholar
Davys, M. N. G. & Pirie, N. W. (1960). Engineering 190, 274.Google Scholar
Davys, M. N. G. & Pirie, N. W. (1965). J. agric. Engng Res. 10, 142.CrossRefGoogle Scholar
Davys, M. N. C. & Pirie, N. W. (1969 a). Biotech. Bioeng 11, 517.CrossRefGoogle Scholar
Davys, M. N. G. & Pirie, N. W. (1969 b). Biotech. Bioeng 11, 529.CrossRefGoogle Scholar
Gerloff, E. D., Lima, I. H. & Stahman, M. A. (1965). J. agric. Fd Chem. 13, 139.CrossRefGoogle Scholar
Hugli, T. E. & Moore, S. (1972). J. biol. Chem. 247, 2828.CrossRefGoogle Scholar
Hurrell, R. F. & Carpenter, K. J. (1975). Br. J. Nutr. 33, 101.CrossRefGoogle Scholar
Hurrell, R. F. & Carpenter, K. J. (1976). Proc. Nutr. Soc. 35, 23A.Google Scholar
Jones, G. P. (1974). The use of dye-binding procedures for the evaluation of protein quality. PhD Thesis, University of Reading.Google Scholar
Lakin, A. L. (1973). In Proteins in Human Nutrition, p. 179 [Porter, J. W. G. and Rolls, B. A., editors]. London and New York: Academic Press.Google Scholar
Lakin, A. L. (1978). In Developments in food Analysis Techniques, Vol. 1, p. 43 [King, R. D., editor]. Barking, Essex: Applied Science Publishers Ltd.Google Scholar
Marshall, C. M. & Walker, A. F. (1978). J. Sci. Fd. Agric. 29, 940.CrossRefGoogle Scholar
Pierpoint, W. S. (1969 a). Biochem. J. 112, 609.CrossRefGoogle Scholar
Pierpoint, W. S. (1969 b). Biochem. J. 112, 619.CrossRefGoogle Scholar
Sandler, L. & Warren, F. L. (1974). Analyt. Chem. 46, 1870.CrossRefGoogle Scholar
Spackman, D. H., Stein, W. H. & Moore, S. (1958). Analyt. Chem. 30, 1190.CrossRefGoogle Scholar
Technicon Instrument Co. Ltd (1974). Industrial Method no. 231–74A. Geneva: Technicon International.Google Scholar
Wilsdon, G. C. H. (1977). In Green Crop Fractionation, p. 155 [Wilkins, R. J., editor]. Hurley, Berkshire: British Grassland Society.Google Scholar