Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T11:38:07.979Z Has data issue: false hasContentIssue false

Dependence of the carbon-isotope contents of breath carbon dioxide, milk, serum and rumen fermentation products on the δ13C value of food in dairy cows

Published online by Cambridge University Press:  09 March 2007

Cornelia Metges
Affiliation:
Lehrstuhl für Allgemeine Chemie und Biochemie, TU München, D-8050 Freising-Weihenstephan, Federal Republic of Germany
Klaus Kempe
Affiliation:
Lehrstuhl für Allgemeine Chemie und Biochemie, TU München, D-8050 Freising-Weihenstephan, Federal Republic of Germany
Hanns-Ludwig Schmidt
Affiliation:
Lehrstuhl für Allgemeine Chemie und Biochemie, TU München, D-8050 Freising-Weihenstephan, Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Six dairy cows of two breeds were fed during three alternating periods with products from C3- and C4-plants to yield different natural 13C enrichments of the diet (δ13C range: -28.0 to -13.7‰). The resulting changes in the 13C enrichment of breath carbon dioxide, serum and milk of the animals followed the 13C: 12C of the food, in agreement with the individual biological half-lives of those products, and established isotope discriminations. Breath CO2 was more enriched in 13C than expected. This could be related to isotope discriminations during rumen fermentation. From these results an isotopic balance model for the breath CO2 could be established.

Type
Rumen Digestion and Metabolism
Copyright
Copyright © The Nutrition Society 1990

References

Boutton, T. W., Tyrrell, H. F., Patterson, B. W., Varga, G. A. & Klein, P. D. (1988). Carbon kinetics of milk formation in Holstein cows in late lactation. Journal of Animal Science 66, 26362645.CrossRefGoogle ScholarPubMed
Bryant, M. P. (1979). Microbial methane production—theoretical aspects. Journal of Animal Science 48, 193201.CrossRefGoogle Scholar
Craig, H. (1957). Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta 12, 133149.CrossRefGoogle Scholar
De Niro, M. J. & Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42, 495506.CrossRefGoogle Scholar
Fry, B., Joern, A. & Parker, P. L. (1978). Grasshopper food webb analysis: use of carbon isotope ratios to examine feeding-relationships among terrestrial herbivores. Ecology 59, 498506.Google Scholar
Games, L. M., Hayes, J. M. & Gunsalus, R. P. (1978). Methane-producing bacteria: natural fractionations of the stable carbon isotopes. Geochimica et Cosmochimica Acta 42, 12951297.CrossRefGoogle Scholar
Hatch, M. D. & Slack, C. R. (1970). The C4 carboxylic acid pathway of photosynthesis. In Progress in Phytochemistry, pp. 35106 [Reinhold, L. and Liwschitz, Y., editors]. New York: Wiley-Interscience.Google Scholar
Hoernicke, H., Williams, W. F., Waldo, D. R. & Flatt, W. P. (1965). Composition and absorption of rumen gases and their importance for the accuracy of respiration trials with tracheostomized ruminants. In Energy Metabolism, pp. 165178 [Blaxter, K. L., editor]. New York: Academic Press.Google Scholar
Jones, R. J., Ludlow, M. M., Throughton, J. H. & Blunt, C. G. (1979). Estimation of the proportion of C3 and C4 plant species in the diet of animals from the ratio of natural 12C and 13C isotopes in the faeces. Journal of Agricultural Science, Cambridge 92, 91100.Google Scholar
Jones, R. J., Ludlow, M. M., Throughton, J. H. & Blunt, C. G. (1981). Changes in the natural carbon isotope ratios of the hair from steers fed diets of C4, C3 and C4 species in sequence. Search 12, 8587.Google Scholar
Kirchgessner, M. (1985). Tierernaehrung (Animal Nutrition). Frankfurt: DLG-Verlag.Google Scholar
Metzler, S., Stobbe, E., Kranz, C., Schmidt, H.-L., Winkler, F. J. & Wolfram, G. (1983). Einfluss des natuerlichen Isotopengehaltes von Naehrstoffen auf den Untergrund bei 13C-Atemtests (Influence of the natural isotope contents of foodstuffs on the background of 13C-breath tests). Zeitschrift fuer Ernaehrungswissenschaft 22, 107115.CrossRefGoogle Scholar
Miller, R. F., Orr, G. L., Fritz, P., Downer, R. G. & Morgan, A. V. (1985). Stable carbon isotope ratios in Periplana americana L., the american cockroach. Canadian Journal of Zoology 63, 584589.CrossRefGoogle Scholar
Pelletier, G., Tyrrell, H. F., Chevalier, R., Hillaire-Marcel, C. & Gagnon, M. (1984). Stable isotope carbon content of various tissues in calves. Canadian Journal of Animal Science 64, suppl., 124126.CrossRefGoogle Scholar
Rosenfeld, W. D. & Silverman, S. R. (1959). Carbon isotope fractionation in bacterial production of methane. Science 130, 16581659.CrossRefGoogle ScholarPubMed
Rust, F. (1981). Ruminant methane δ(13C/12C) values: relation to atmospheric methane. Science 211, 10441046.CrossRefGoogle ScholarPubMed
Schlegel, H. G. (1981). Allgemeine Mikrohiologie (General Microbiology). Stuttgart: G. Thieme Verlag.Google Scholar
Schmidt, H.-L. (1986). Food quality control and studies on human nutrition by mass spectrometric and nuclear magnetic resonance isotope ratio determination. Fresenius Zeitschrift fuer Analytische Chemie 324, 760766.CrossRefGoogle Scholar
Schoell, M. (1980). The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochimica et Cosmochimica Acta 44, 649661.Google Scholar
Schoeller, D. A. & Klein, P. D. (1978). A simplified technique for collecting breath-CO2 for isotope ratio mass spectrometry. Biomedical Mass Spectrometry 5, 2931.Google Scholar
Schroeder, G. L. & Ben-Ghedalia, D. (1986). The fate of dietary components in sheep digesta as indicated by stable carbon isotopes. Nutrition Reports International 34, 691 699.Google Scholar
Schroeder, G. & Plavnik, I. (1984). The use of stable carbon isotopes in measuring the transfer of macronutrients in poultry. Nutrition Reports International 30, 559561.Google Scholar
Teeri, J. A. & Schoeller, D. A. (1979). δ13C values of an herbivore and the ratio of C13 to C4 plant carbon in its diet. Oecologia 39, 197200.Google Scholar
Tieszen, L. L., Hein, D., Qvortrup, S. A., Troughton, J. H. & Imbamba, S. K. (1979). Use of δ13C values to determine vegetation selectivity in East African herbivores. Oecologia 37, 351359.CrossRefGoogle ScholarPubMed
Tyrrell, H. F., Pelletier, G., Chevalier, R., Hillaire-Marcel, L. & Gagnon, M. (1984). Use of carbon 13 as a tracer in metabolism studies. Canadian Journal of Animal Science 64, 127129.CrossRefGoogle Scholar
Winkler, F. J. & Schmidt, H.-L. (1980). Einsatzmöglichkeiten der 13C-Isotopen-Massenspektrometrie in der Lebensmitteluntersuchung (Application of the 13C isotope mass spectrometry in food science). Zeitschrift fuer Lebensmitteluntersuchung und Forschung 171, 8594.CrossRefGoogle Scholar