Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T01:08:35.973Z Has data issue: false hasContentIssue false

Copper, iron, manganese and zinc concentrations in the carcases of lambs and calves and the relationship to trace element requirements for growth

Published online by Cambridge University Press:  09 March 2007

N. F. Suttle
Affiliation:
Moredun Research Institute, 408 Gilmerton Road, Edinburgh EH17 7JH
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The minced carcases of twenty-seven lambs, ranging from 18 to 69 kg in live weight, and twenty-five calves (30–90 kg) were analysed for copper, iron, manganese and zinc. The lambs were weaned whereas the calves were reared exclusively on milk.

2. Mean concentrations of Fe, Mn and Zn for groups of lamb carcases fell within the ranges 52.6–75.1, 0.7–1.2 and 20.8–25.6 mg/kg fresh carcase weight respectively. The concentrations of Fe and Mn decreased while that of Zn increased slightly with age at slaughter. The concentrations of Fe, Mn and Zn in calves were close to thosein lambs.

3. For both species, the concentration of Cu in the carcase varied erratically: variation in hepatic Cu storage was implicated. In an additional study of ten full-term foetuses from Cu-depleted or Cu-supplemented ewes, a dietary Cu supplement (10 mg/kg dry matter (DM)) increased foetal Cu status 10-fold, due largely to an increase in foetal liver Cu.

4. The mean retentions of trace elements in the lamb carcases (%intake) were approximately: Cu 2.0, Fe 1.3, Mn 0.08, Zn 4.0. The corresponding values for the milk-fed calves were all probably much higher (Cu 23, Fe 43.7, Mn 4.9, Zn 34.0) but Cu intake was not accurately measured.

5. After allowing for tissue storage of Fe and Mn, values of 55, 0.85 and 24 mg/kg carcase gain were taken to represent the approximate net growth requirements of lambs for Fe, Mn and Zn respectively: the corresponding value for Cu was probably < 1.0 mg/kg. Values for calves were similar to those for lambs.

6. It was concluded that the total net requirements of ruminants for Fe and Zn shouldbe considered in terms of daily intakes of the metans rather than dietary concentrationsbecause of the relatively large and constant contribution of the growth component to thetotal requirement.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1979

References

Agricultural Research Council (1965). The Nutrient Requirement of Farm Livestock No. 2, Ruminants. London: Agricultural Research Council.Google Scholar
Blaxter, K. L., Sharman, G. A. M. & MacDonald, A. M. (1957). Br. J. Nutr. 11, 234.Google Scholar
Bremner, I., Brockway, J. M., Donnelly, H. T. & Webster, A. J. F. (1976). Vet. Rec. 99, 203.Google Scholar
Bremner, I. & Dalgarno, A. C. (1973). Br. J. Nutr. 29, 229.CrossRefGoogle Scholar
Charpentier, J. (1966). Annls Zootech. 15, 361.CrossRefGoogle Scholar
Field, A. C. & Suttle, N. F. (1966). Proc. Nutr. Soc. 25, xxiii.Google Scholar
Hallberg, L., Garby, L., Suwanik, R., & Bjorn-Rasmussen, E. (1974). Am. J. clin. Nutr. 27, 826.CrossRefGoogle Scholar
Hansard, S. L., Mohammed, A. S. & Turner, J. W. (1968). J. Anim. Sci. 27, 1097.CrossRefGoogle Scholar
Hinks, C. E. (1977). Anim. Feed Sci. Technol. 2, 85.CrossRefGoogle Scholar
Howes, A. D. & Dyer, I. A. (1971). J. Anim. Sci. 32, 141.CrossRefGoogle Scholar
Kay, R. N. B., Thivend, P., Goodall, E. D. & Dalgarno, A. C. (1978). Proc. Nutr. Soc. 37, 58A.Google Scholar
Kirchgessner, M. & Neesse, K. R. (1976). Z. Lebensm. Uniers-Forsch. 161, 1.CrossRefGoogle Scholar
MacDougall, D. B., Bremner, I. & Dalgarno, A. C. (1973). J. Sci. Fd. Agric. 24, 1255.CrossRefGoogle Scholar
Miller, J. K. & Cragle, R. G. (1965). J. Dairy Sci. 48, 370.Google Scholar
Miller, W. J., Martin, Y. G., Gentry, R. P. & Blackmon, D. M. (1968). J. Nutr. 94, 391.CrossRefGoogle Scholar
Mills, C. F., Dalgarno, A. C., Williams, R. B. & Quarterman, J. (1967). Br. J. Nutr. 21, 751.CrossRefGoogle Scholar
Ott, E. A., Smith, W. H., Stob, M., Parker, H. E., Harrington, R. B. & Beeson, W. M. (1965). J. Nutr. 87, 459.CrossRefGoogle Scholar
Sansom, B. F., Vagg, M. J. &Taylor, P. J. (1972). In Production Disease in Farm Animals, p. 122 [ Payne, J. M., Hibbitt, K. G., Sansom, B. F. editors]. London: Bailliere Tindall.Google Scholar
Smith, B. S. W. & Sykes, A. R. (1974). J. agric. Sci., Camb. 82, 105.CrossRefGoogle Scholar
Suttle, N. F. (1975). J. agric. Sci., Camb. 84, 255.CrossRefGoogle Scholar
Suttle, N. F. (1978). Proc. 3rd. int. Symp. Trace Elemeni Metabolism in Man and Animals, p. 473 [Kirchgessner, M., editor ]. Weihenstephan W. Germany: Arbeitskreis Tierernahrung.Google Scholar
Suttle, N. F. & Field, A. C. (1968). J. comp. Path. 78, 351.Google Scholar
Sykes, A. R. & Coop, R. L. (1976). J. agric. Sci., Cumb. 86, 507.Google Scholar
Sykes, A. R. & Coop, R. L. (1977). J. agric. Sci., Camb. 88, 671.CrossRefGoogle Scholar
Thompson, R. & Blanchflower, J. (1971). Lab. Prac. 20, 100.Google Scholar
Underwood, E. J. (1977). In Trace Elements in Human and Animal Nufrition. New York: Academic Press.Google Scholar
Van Hellemond, K. K. & Sprietsma, J. E. (1977). Landbouwk. Tijdsch. 89, 174.Google Scholar
Wainman, F. W., Blaxter, K. L. & Pullar, J. D. (1970). J. agric. Sci., Camb. 74, 311.CrossRefGoogle Scholar
Weigand, E. & Kirchgessner, M. (1977). Z. Tierphysiol. Tierernahr. Futiermitt. 39, 325.Google Scholar
Williams, A. P. (1978). J. agric. Sci., Camb. 90, 617.CrossRefGoogle Scholar
Williams, R. B., McDonald, I. & Bremner, I. (1978). Br. J. Nutr. 40, 377.Google Scholar