Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T03:24:09.316Z Has data issue: false hasContentIssue false

Comparison between time-dependent changes in iron metabolism of rats as induced by marginal deficiency of either vitamin A or iron

Published online by Cambridge University Press:  09 March 2007

Annet J. C. Roodenburg
Affiliation:
Department of Human Nutrition, Wageningen Agricultural University, PO Box 8129, 6700 EV Wageningen, The Netherlands Department of Laboratory Animal Science, State University, PO Box 80.166. 3508 TD Utrecht, The Netherlands
Clive E. West
Affiliation:
Department of Human Nutrition, Wageningen Agricultural University, PO Box 8129, 6700 EV Wageningen, The Netherlands
Shiguang Yu
Affiliation:
Department of Human Nutrition, Wageningen Agricultural University, PO Box 8129, 6700 EV Wageningen, The Netherlands Department of Laboratory Animal Science, State University, PO Box 80.166. 3508 TD Utrecht, The Netherlands
Anton C. Beynen
Affiliation:
Department of Laboratory Animal Science, State University, PO Box 80.166. 3508 TD Utrecht, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To compare the changes in Fe metabolism during the development of vitamin A and Fe deficiencies, rats were given either a control diet with sufficient Fe (35 mg added Fe/kg feed) and retinol (1200 retinol equivalents/kg feed), a diet without added vitamin A or a diet with sufficient vitamin A but only 3.5 mg added Fe/kg feed. During a period of 10 weeks, indicators of vitamin A and Fe status were monitored. Neither vitamin A nor Fe deficiency produced clinical signs. Fe deficiency induced an immediate fall in blood haemoglobin concentration. Vitamin A deficiency produced a mild anaemia as the first change in Fe metabolism, pointing to unpaired erythropoiesis. This effect was followed by a rise in Fe absorption and an increased amount of Fe in the spleen. By the end of the study, blood haemoglobin, packed cell volume, plasma Fe and Fe content in kidney and femur had increased above control levels, while total Fe-binding capacity had decreased. We speculate that the initial anaemia was masked later by haemoconcentration. The decrease in Fe mobilization, shown by lower total Fe-binding capacity, and the increase in Fe absorption may have caused the observed continuous rise in tissue Fe concentration in rats with vitamin A deficiency. In the rats with Fe deficiency, low tissue Fe levels coincided with high Fe absorption and high total Fe-binding capacity. Thus, changes in Fe metabolism with vitamin A deficiency differed from those with Fe deficiency.

Type
Interaction between vitamin A status and iron metabolism
Copyright
Copyright © The Nutrition Society 1994

References

Amine, E. K., Corey, J., Hegsted, D. M. & Hayes, K. C. (1970). Comparative hematology during deficiencies of iron and vitamin A in the rat. Journal of Nutrition 100, 10331040.CrossRefGoogle ScholarPubMed
Belcher, E. H. & Harriss, E. B. (1957). Studies of plasma volume, red cell volume and total blood volume in young growing rats. Journal of Physiology 139, 6478.CrossRefGoogle ScholarPubMed
Beynen, A. C., Sijtsma, K. W., van den Berg, G. J., Lemmens, A. G. & West, C. E. (1991). Iron metabolism in vitamin A deficiency. Trace Elements in Man and Animals 7, 211216.Google Scholar
Bloem, M. W., Wedel, M., Egger, R. J., Speek, A. J., Schrijver, J., Saowakontha, S. & Schreurs, W. H. P. (1989). Iron metabolism and vitamin A deficiency in children in Northeast Thailand. American Journal of Clinical Nutrition 50, 332338.CrossRefGoogle ScholarPubMed
Bloem, M. W., Wedel, M., van Agtmaal, E., Speek, A. J., Saowakontha, S. & Schreurs, W. H. P. (1990). Vitamin A intervention: short-term effects of a single, oral massive dose on iron metabolism. American Journal of Clinical Nutrition 51, 7679.CrossRefGoogle ScholarPubMed
Corey, J. E. & Hayes, K. C. (1972). Cerebrospinal fluid pressure, growth and hematology in relation to retinol status of the rat in acute vitamin A deficiency. Journal of Nutrition 102, 15851594.CrossRefGoogle ScholarPubMed
Hodges, R. E., Sauberlich, H. E., Canham, J. E., Wallace, D. L., Rucker, R. B., Mejia, L. A. & Mohanram, M. (1 978). Hematopoietic studies in vitamin A deficiency. American Journal of Clinical Nutrition 31, 876885.CrossRefGoogle Scholar
Keusch, G. T. (1990). Micronutrients and susceptibility to infection. Annals of the New York Acudemy of Sciences 587, 181188.CrossRefGoogle ScholarPubMed
Koessler, K. K., Maurer, S. & Loughlin, R. (1926). The relation of anaemia, primary and secondary, to vitamin A deficiency. Journal of the American Medical Association 87, 476482.CrossRefGoogle Scholar
McLaren, D. S., Tchalian, M. & Ajans, Z. A. (1965). Biochemical and hematologic changes in the vitamin A deficient rat. American Journal of Clinical Nutrition 17, 131138.CrossRefGoogle ScholarPubMed
Mahant, L. & Eaton, H. D. (1976). Effect of chronic hypovitaminosis A on water metabolism in the weanling rat. Journal of Nutrition 106, 18171826.CrossRefGoogle ScholarPubMed
Mejia, L. A. & Arroyave, G. (1982). The effect of vitamin A fortification of sugar on iron metabolism in preschool children in Guatemala. American Journal of Clinical Nutrition 36, 8793.CrossRefGoogle ScholarPubMed
Mejia, L. A. & Chew, F. (1988). Hematological effect of supplementing anemic children with vitamin A alone and in combination with iron. American Journal of Clinical Nutrition 48, 595–6OO.CrossRefGoogle ScholarPubMed
Mejia, L. A., Hodges, R. E. & Rucker, R. B. (19796). Clinical signs of anemia in vitamin A-deficient rats. American Journal of Clinical Nutrition 32, 14391444.CrossRefGoogle Scholar
Mejia, L. A., Hodges, R. E. & Rucker, R. B. (1979b). Role of vitamin A in the absorption, retention and distribution of iron in the rat. Journal of Nutrition 109, 129137.CrossRefGoogle ScholarPubMed
Muhilal, , Permeisih, D., Idjradinata, Y. R., Muherdiyantiningsih, , Karyadi, D. (1988). Vitamin A-fortified monosodium glutamate and health, growth, and survival of children: a controlled field trial. American Journal of Clinical Nutrition 48, 12711276.CrossRefGoogle ScholarPubMed
National Research Council (1978). Nutrient Requirements of Laboratory Animals. Washington: National Academy of Sciences.Google Scholar
Nauss, K. L., Phua, C. C., Ambrogi, L. & Newberne, P. M. (1985). Immunological changes during progressive stages of vitamin A deficiency in the rat. Journal of Nutrition 115, 909918.CrossRefGoogle ScholarPubMed
Panth, M., Shatrugna, V., Yasodhara, P. & Sivakumar, B. (1990). Effect of vitamin A supplementation on haemoglobin and vitamin A levels during pregnancy. British Journal of Nutrition 64, 351358.CrossRefGoogle ScholarPubMed
Sauberlich, H. E., Hodges, R. E., Wallace, D. L., Kolder, H., Canham, J. E., Hood, J., Raica, N. & Lowry, L. K. (1974). Vitamin A metabolism and requirements in the human studied with the use of labelled retinol. Vitamins and Hormones 32, 251275.CrossRefGoogle Scholar
Scrimshaw, N. S., Taylor, C. E. & Gordon, J. E. (1968). Interactions of Nutrition and Infection. WHO Monograph Series no. 57. Geneva: World Health Organization.Google Scholar
Sijtsma, K. W., Van den Berg, G. J., Lemmens, A. G., West, C. E. & Beynen, A. C. (1993). Iron status in rats fed on diets containing marginal amounts of vitamin A. British Journal of Nutrition 70, 777785.CrossRefGoogle ScholarPubMed
Sklan, D., Harlevy, O. & Donoghue, S. (1986). The effect of different dietary levels of vitamin A on metabolism of copper, iron and zinc in the chick. International Journal for Vitamin and Nutrition Research 57, 1118.Google Scholar
Staab, D. B., Hodges, R. E., Metcalf, W. K. & Smith, J. L. (1984). Relationship between vitamin A and iron in the liver. Journal of Nutrition 114, 840844.CrossRefGoogle ScholarPubMed
Suharno, D., West, C. E., Muhilal, , Logman, M. H. G. M., de Waart, F. G., Karyadi, D. & Hautvast, J. G. A. J. (1992). Cross sectional study on the iron and vitamin A status of pregnant women in West Java, Indonesia. American Journal of Clinical Nutrition 56, 988993.CrossRefGoogle ScholarPubMed
Van Waversveld, J. & Van Bruchem, J. (1985). Determination of blood (plasma) volume in sheep with Evans Blue and Bromsulphalein. Netherlands Journal of Agricultural Science 33, 325327.CrossRefGoogle Scholar
Wagner, K. H. (1940). Die Experimentelle Avitamineose A beim Menschen (Experimental avitaminosis in humans). Hoppe-Seyler's Zeirschrift für Physiologische Chemie 246, 153189.CrossRefGoogle Scholar
West, C. E. & Roodenburg, A. J. C. (1992). Role of vitamin A in iron metabolism. Voeding 53, 201205.Google Scholar
Wirth, D. (1950). Grundlagen eines KIinischen Hamatologie der Hautiere (Basics in clinical haemafology of domestic animals), 2nd ed. Vienna: Urban en Schwarzenberg.Google Scholar
Wolde-Gebriel, Z., Haile Gebru Fisseha, T. & West, C. E. (1993 a). Vitamin A, iron and iodine status in children with severe vitamin A deficiency in a rural village in Hararge Region of Ethiopia. European Journal of Clinical Nutrition 47, 104114.Google Scholar
Wolde-Gebriel, Z., West, C. E., Haile Gebru, , Tadesse, A. S., Fisseha, T., Gabre, P., Aboye, C., Ayana, G. & Hautvast, J. G. A. J. (1993 b). Interrelationship between vitamin A, iodine and iron status in school children in Shoa Region, Central Ethiopia. British Journal of Nutrition 70, 593–407.CrossRefGoogle Scholar
Worvood, M. & Jacobs. A. (1972). The subcellular distribution of 59Fe in small intestinal mucosa: studies with normal, iron deficient and iron overloaded rats. British Journal of Haematology 22, 265272.CrossRefGoogle Scholar