Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T11:15:28.292Z Has data issue: false hasContentIssue false

Collagenase and other proteinases in the cornea of the retinol-deficient rat

Published online by Cambridge University Press:  09 March 2007

Antoinette Pirie
Affiliation:
Strangeways Research Laboratory, Wort's Causeway, Cambridge CBI 4RN
Zena Werb
Affiliation:
Strangeways Research Laboratory, Wort's Causeway, Cambridge CBI 4RN
Mary C. Burleigh
Affiliation:
Strangeways Research Laboratory, Wort's Causeway, Cambridge CBI 4RN
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Enzymes that may contribute to liquefaction of the cornea in retinol-deficient animals and in man have been studied using rat cornea. The established technique of culturing tissue fragments and determining the activity of collagenase (EC 3.4.24.3) and other enzymes in the medium after different periods of culture was used.

2. A collagenolytic system was detected in the media from cultures of rat corneas. This system probably consists of at least two enzymes, a collagenase and a neutral proteinase.

3. Both proteolytic and specific collagenolytic activity were greater in media from retinol-deficient rat corneas. The hydroxyproline level increased in parallel with the increase in enzyme activity.

4. In the final stages of retinol deficiency the cornea is invaded by granulocytes and other cells of the blood and we suggest that destruction of cornea collagen may be due largely to the activity of the enzymes from these cells.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1975

References

Bradford Hill, A. (1971). Principles of Medical Statistics, 9th ed., ch. 6. London: The Lancet.Google Scholar
Broomfield, S. E. & Brown, S. I. (1974). Invest. Ophthal. 13, 547.Google Scholar
Brown, S. I. & Hook, C. W. (1971). Am. J. Opthal. 72, 1139.CrossRefGoogle Scholar
Burleigh, M. C., Barrett, A. J. & Lazarus, G. S. (1974). Biochem. J. 137, 387.CrossRefGoogle Scholar
Charney, J. & Tomarelli, R. M. (1947). J. biol. Chem. 171, 501.CrossRefGoogle Scholar
Davison, P. F. & Berman, M. (1973). Connect. Tissue Res. 2, 57.CrossRefGoogle Scholar
Dowling, J. E. & Wald, G. (1960). Vitams Horm. 18, 515.CrossRefGoogle Scholar
Gnadinger, M. C., Itoi, M., Slansky, H. H. & Dohlman, C. H. (1969). Am. J. Ophthal. 68, 478.CrossRefGoogle Scholar
Harris, E. D. & Krane, S. M. (1972). Biochim. biophys. Acta 258, 566.CrossRefGoogle Scholar
Harris, E. D. & Krane, S. M. (1974). New Engl. J. Med. 291, 605.CrossRefGoogle Scholar
Jeffrey, J. J. & Gross, J. (1970). Biochemistry, Easton 9, 268.CrossRefGoogle Scholar
Kuming, B. S. & Politzer, W. M. (1967). Br. J. Ophthal. 51, 648.CrossRefGoogle Scholar
Lazarus, G. S., Brown, R. S., Daniels, J. R. & Fullmer, H. M. (1968). Science, N. Y. 159, 1483.CrossRefGoogle Scholar
Lazarus, G. S., Daniels, J. R., Lian, J. & Burleigh, M. C. (1972). Am. J. Path. 68, 565.Google Scholar
Lemp, M. A. (1974). Archs Ophthal., N. Y. 92, 158.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
Moore, T. & Holmes, P. D. (1971). Lab. Anim. 5, 239.CrossRefGoogle Scholar
Neville, D. M. (1971). J. biol. Chem. 246, 6328.CrossRefGoogle Scholar
Tokoro, Y., Eisen, A. Z. & Jeffrey, J. J. (1972). Biochim. biophys. Acta 258, 289.CrossRefGoogle Scholar
Weimar, V. (1957). J. exp. Med. 105, 141.CrossRefGoogle Scholar
Werb, Z. & Burleigh, M. C. (1974). Biochem. J. 137, 373.CrossRefGoogle Scholar
Werb, Z., Burleigh, M. C., Barrett, A. J. & Starkey, P. (1974). Biochem. J. 139, 359.CrossRefGoogle Scholar