Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T11:09:17.979Z Has data issue: false hasContentIssue false

Cold exposure and mammary glucose metabolism in thelactating goat

Published online by Cambridge University Press:  25 February 2008

A. Faulkner
Affiliation:
Hannah Research Institute, Ayr KA6 5 HL, Scotland and Nuffield Institutefor Medical Research, Oxford OX3 9DS
E. M. Thomson
Affiliation:
Hannah Research Institute, Ayr KA6 5 HL, Scotland and Nuffield Institutefor Medical Research, Oxford OX3 9DS
J. M. Bassett
Affiliation:
Hannah Research Institute, Ayr KA6 5 HL, Scotland and Nuffield Institutefor Medical Research, Oxford OX3 9DS
G. E. Thomsont
Affiliation:
Hannah Research Institute, Ayr KA6 5 HL, Scotland and Nuffield Institutefor Medical Research, Oxford OX3 9DS
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. [U-14C]glucose was infused intravenously into conscious lactating goats exposed to thermoneutral or cold environments for a total of 24 h. The irreversible loss of glucose from the whole body and uptake of glucose by the mammary gland was measured and glucose utilization in the udder was studied by measuring the incorporation of radioactivity into carbon dioxide in mammary venous blood, into milk lactose and milk triglyceride-glycerol.

2. Exposure to cold increased the circulating level of glucose and slightly, though not significantly, increased the non-mammary irreversible loss of glucose.

3. The extraction of glucose from the circulation by the udder fell, the secretion of lactose by the udder also fell and this correlated closely with the reduced secretion of milk in the cold.

4. Simultaneous measurements of the concentrations of insulin, growth hormone and corticosteroids in the arterial plasma were made.

5. The plasma concentration of corticosteroids increased significantly in the cold.

6. It is concluded that reduced glucose uptake and lactose synthesis by the udder are important factors which reduce milk secretion during cold exposure.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1980

References

REFERENCES

Abraham, G. E., Buster, J. E. & Teller, R. C. (1972). Analyt. Lett. 5, 757.Google Scholar
Annison, E. F. & Linzell, J. L. (1964). J. Physiol., Lond. 175, 372.CrossRefGoogle Scholar
Baird, G. D. (1969). Biochim, biophys. Acta 177, 343.Google Scholar
Bassett, J. M. (1974). Aust. J. bid. Sci. 27, 167.Google Scholar
Bassett, J. M. & Thorburn, G. D. (1971). J. Endocr. 50, 59.Google Scholar
Bell, A. W., Gardner, J. W., Manson, W. & Thompson, G. E. (1975). Br. J. Nutr. 33, 207.Google Scholar
Bergman, E. N. & Hogue, D. E. (1967). Am. J. Physiol. 213, 1378.Google Scholar
Clarke, P. L., Thomson, E. M. & Thompson, G. E. (1976). J. Physiol., Lond. 263, 176P.Google Scholar
Cobble, J. W. & Herman, H. A. (1951). Res. Bull. Mo. Agric. Exp. Stn. no. 485.Google Scholar
Depocas, F. & Masironi, R. (1960). Am. J. Physiol. 199, 1051.Google Scholar
Hardwick, D. C., Linzell, J. L. & Mepham, T. B. (1963). Biochem. J. 88, 213.Google Scholar
Hartmann, P. E. & Kronfeld, D. S. (1973). J. Diary Sci. 56, 896.CrossRefGoogle Scholar
Jones, G. B. (1965). Analyt. Biochem. 12, 249.CrossRefGoogle Scholar
Knodt, C. B. & Petersen, W. E. (1945). J. Dairy Sci. 28, 415.Google Scholar
Lin, C. H. & Fritz, I. B. (1972). Can. J. Biochem. 50, 963.CrossRefGoogle Scholar
Linzell, J. L. (1960 a). J. Physiol., Lond. 153, 481.Google Scholar
Linzell, J. L. (1960 b). J. Physiol., Lond. 153. 492.Google Scholar
Linzell, J. L. & Mepharn, T. B. (1968). Biochem. J. 107, 18.Google Scholar
Linzell, J. L. & Peaker, M. (1971). Physiol. Rev. 51, 564.CrossRefGoogle Scholar
McKay, D. G., Young, B. A. & Milligan, L. P. (1974). In Energy Metabolism of Farm Animals, pp. 3942. Hohenheim: Universität Hohenheim Dokumentationsstelle.Google Scholar
Panaretto, B. A. & Vickery, M. R. (1970). J. Endocr. 47, 273.CrossRefGoogle Scholar
Paterson, J. Y. F. & Linzell, J. L. (1971). J. Endocr. 50, 593.Google Scholar
Robinson, A. M. & Williamson, D. H. (1977). Biochem. J. 164, 153.Google Scholar
Scott, R. A., Baumen, D. E. & Clark, J. H. (1976). J. Dairy Sci. 59, 50.CrossRefGoogle Scholar
Slein, M. W. (1963). In Methodsof Enzymatic Analysis, pp. 117123 (Bergmeyer, H. U., editor). New York: Academic Press.Google Scholar
Thompson, G. E., Manson, W., Clarke, P. L. & Bell, A. W. (1978). Q. Jl exp. Physiol. 63, 189.Google Scholar
Thompson, G. E. & Thomson, E. M. (1977). J. Physiol., Lond. 272, 187.CrossRefGoogle Scholar
Vernon, R. G. (1977). Int. J. Biochem. 8, 517.Google Scholar
Wallace, A. L. C. & Bassett, J. M. (1970). J. Endocr. 47, 21.CrossRefGoogle Scholar
Wood, H. G., Peeters, G. J., Verbeke, R., Lauryssens, M. & Jacobson, B. (1965). Biochem. J. 96, 607.Google Scholar