Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T20:56:03.987Z Has data issue: false hasContentIssue false

Characterization of an antithrombotic peptide from α-casein in newborn plasma after milk ingestion

Published online by Cambridge University Press:  09 March 2007

Beathice Chabance
Affiliation:
CNRS URA 1188, Laboratoire des Protéines, Université de Paris V, 45 rue des Saints-Pères, F-75270 Paris Cedex 06, France
Pierre Jollès
Affiliation:
CNRS URA 1188, Laboratoire des Protéines, Université de Paris V, 45 rue des Saints-Pères, F-75270 Paris Cedex 06, France
Carmen Izquierdo
Affiliation:
CNRS URA 1188, Laboratoire des Protéines, Université de Paris V, 45 rue des Saints-Pères, F-75270 Paris Cedex 06, France
Elisabeth Mazoyer
Affiliation:
Institut des Vaisseaux et du Sang, Hospital Lariboisière, 8 rue Guy Patin, F-75010 Paris, France
Christine Francoual
Affiliation:
Hôpital Saint-Vincent de Paul, 74-82 avenue Denfert Rochereau, F-75674 Paris Cedex 14, France
Ludovic Drouet
Affiliation:
Institut des Vaisseaux et du Sang, Hospital Lariboisière, 8 rue Guy Patin, F-75010 Paris, France
Anne-Marie Fiat
Affiliation:
CNRS URA 1188, Laboratoire des Protéines, Université de Paris V, 45 rue des Saints-Pères, F-75270 Paris Cedex 06, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bovine and human k-caseinoglycopeptides, two antithrombotic peptides derived from the corresponding k-caseins, were detected in physiologically active concentrations in the plasma of 5-d-old newborn infants after ingestion of cow's-milk-based formula or human milk respectively. It is suggested that these two bioactive peptides are released from milk proteins during digestion.

Type
Antithrombic peptides from casein in newborn
Copyright
Copyright © The Nutrition Society 1995

References

Fall, C. H. D., Barker, D. J. P., Osmond, C., Winter, P. D., Clark, P. M. S. & Hakes, C. N. (1992). Relation of infant feeding to adult serum cholesterol concentration and death from ischaemic heart disease. British Medical Journal 304, 801805.CrossRefGoogle ScholarPubMed
Fiat, A. M., Migliore-Samour, D., Jollès, P., Drouet, L., Bal dit Sollier, C. & Caen, J. P. (1993). Biologically active peptides from milk proteins with emphasis on two examples concerning antithrombic and immunomodulating activities. Journal of Dairy Science 76, 301310.CrossRefGoogle Scholar
Gardner, M. L. G. (1988). Gastrointestinal absorption of intact proteins. Annual Review of Nutrition 8, 329350.CrossRefGoogle ScholarPubMed
Jollès, P., Alais, C. & Jollès, J. (1961). Etude comparée des caséinoglycopeptides formés par action de la préssure sur les caséines des laits de vache, de brebis et de chèvre. I. Etude de la partie peptidique. (Comparative study of caseinoglycopeptides obtained from cow, ewe and goat caseins after chymosin action. I. Study of the peptide constituent.) Biochimica et Biophysica Acta 51, 309314.CrossRefGoogle Scholar
Jollès, P., Lévy-Tolédano, S., Fiat, A. M., Soria, C., Gillessen, D., Thomaidis, A., Dunn, F. W. & Caen, J. P.(1986). Analogy between fibrinogen and casein. Effect of an undecapeptide isolated from k-casein on platelet function. European Journal of Biochemistry 158, 379382.CrossRefGoogle ScholarPubMed
McKenzie, M. A. & Wake, R. G. (1961). An improved method for the isolation of k-casein. Biochimica et Biophysica Acta 47, 240242.CrossRefGoogle Scholar
Mason, S. (1962). Some aspects of gastric function in the newborn. Archives of Disease in Childhood 37, 387391.CrossRefGoogle ScholarPubMed
Meisel, H. & Frister, H. (1989). Chemical characterization of bioactive peptides from in vivo digests of casein. Journal of Dairy Research 56, 343349.CrossRefGoogle ScholarPubMed
Naito, H. & Susuki, H. (1974). Further evidence for the formation in vivo of phosphopeptide in the intestinal lumen from dietary β-casein. Agricultural Biological Chemistry 38, 15431545.CrossRefGoogle Scholar
Stan, E. Y. & Chernikov, M. P. (1982). Formation of a peptide inhibitor of gastric secretion from rat milk proteins in vivo. Bulletin of Experimental Biological Medicine (Translated from Byulleten' Eksperimental' noi Biologii i Meditsiny) 94, 10871089.Google Scholar
Stan, E. Y., Groisman, S. D., Krasil'schchikov, K. B. & Chernikov, M. P. (1983). Effect of k- casein glycomacropeptide on gastrointestinal motility in dogs. Bulletin of Experimenta1 Biological Medicine (Translated from Byulleten' Eksperimental'noi Biologii i Meditsiny) 96, 889891.Google ScholarPubMed
Svedberg, J., De Haas, J., Leimenstoll, G., Paul, F. & Teschmacher, H. (1985). Demonstration of β- casomorphin immunoreactive materials in in vitro digest of bovine milk and in small intestine contents after bovine milk ingestion in adult human. Peptides 6, 825830.CrossRefGoogle Scholar
Umbach, M., Teschmacher, H., Practorius, K., Hirschäuser, R. & Bostedt, H. (1985). Demonstration of a β- casomorphin immunoreactive material in the plasma of newborn calves after milk intake. Regulatory Peptides 12, 223230.CrossRefGoogle ScholarPubMed
Yvon, M. & Pélissier, J. P. (1987). Characterisation and kinetics of evacuation of peptides resulting from casein hydrolysis in the stomach of the calf. Journal of Agricultural and Food Chemistry 35, 148156.CrossRefGoogle Scholar