Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T22:23:33.342Z Has data issue: false hasContentIssue false

Changes in the activity of rat muscle AMP deaminase in relation to the proportion of dietary protein

Published online by Cambridge University Press:  24 July 2007

L. V. Turner
Affiliation:
Clinical Nutrition and Metabolism Unit, Human Nutrition Department, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
E. B. Fern
Affiliation:
Clinical Nutrition and Metabolism Unit, Human Nutrition Department, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The purine nucleotide cycle has been proposed (Lowenstein, 1972) as an alternative scheme for amino acid deamination in tissues, such as skeletal muscle, having low concentrations of glutamate dehydrogenase (EC 1.4.1.2).

2. Activities of AMP deaminase (EC 3.5.4.6), one of the enzymes of the cycle, have been measured in soleus, plantaris and extensor digitorum longus muscles of rats maintained for 18 d on diets providing 0, 0·035 or 0·10 net dietary protein energy (energy supplied by utilizable protein: total metabolizable energy, NDp:E), and in rats given the 0·10 NDp:E diet for 3 d after the 0 or 0·035 NDp:E regimens.

3. Concentration of AMP deaminase in the different muscles from the control (0·10 NDp:E diet) rats appeared to bear an inverse relationship to the proportion of mitochondria-rich fibres (i.e. rich in glutamate dehydrogenase) in each muscle.

4. Dietary protein deprivation (0 or 0·035 NDp:E) led to adaptive reductions in AMP-deaminase activity in the soleus and plantaris muscles, but in the extensor muscle the 0·035 NDp:E diet produced no change, while the 0 NDp:E diet caused an increase in activity.

5. Refeeding the 0·10 NDp:E diet to the protein-deprived rats caused reductions of AMP-deaminase activity to lower levels in all three muscles, except in the instance of soleus in rats refed after the 0·035 NPp:E diet.

6. In view of the different responses shown by the three muscles to the dietary treatments, the importance of specifying the particular muscles used in future nutritional studies is emphasized.

7. The adaptive changes in AMP deaminase are discussed in terms of operation of the purine nucleotide cycle for amino acid deamination responding to the changes in amino acid catabolism known to be caused in muscle by these protein-deficient diets.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1974

References

REFERENCES

Ashley, J. H. & Fisher, H. (1967). Br. J. Nutr. 21, 661.CrossRefGoogle Scholar
Braunstein, A. E. (1957). Adv. Enzymol. 19, 335.Google Scholar
Cahill, G. F. (1971). In Muscle Metabolism in Exercise p. 103 [Pernow, B. and Saltin, B., editors]. London: Plenum Press.CrossRefGoogle Scholar
Close, R. I. (1972). Physiol. Rev. 52, 129.CrossRefGoogle Scholar
Conway, E. J. & Cooke, R. (1939). Biochem. J. 33, 479.CrossRefGoogle Scholar
Currie, R. D. & Webster, H. L. (1962). Biochim. biophys. Acta 64, 30.CrossRefGoogle Scholar
Edgerton, V. R., Gerchmann, L. & Carrow, R. (1969). Expl Neurol. 24, 110.CrossRefGoogle Scholar
Goldberg, A. L. (1967). Nature, Lond. 216, 1219.CrossRefGoogle Scholar
Howarth, R. E. (1972). Can. J. Physiol. Pharmac. 50, 59.CrossRefGoogle Scholar
Howarth, R. E. & Baldwin, R. L. (1971). J. Nutr. 101, 485.CrossRefGoogle Scholar
Kalckar, H. M. & Rittenberg, D. (1947). J. biol. Chem. 170, 455.CrossRefGoogle Scholar
Lohmann, K. (1931). Biochem. Z. 241, 67.Google Scholar
Lowenstein, J. M. (1972). Physiol. Rev. 52, 382.CrossRefGoogle Scholar
Millward, D. J., Garlick, P. J., James, W. P. T., Nnanyelugo, D. O. & Ryatt, J. S. (1973). Nature, Lond. 241, 204.CrossRefGoogle Scholar
Mimura, T., Yamada, C. & Swendseid, M. E. (1968). J. Nutr. 95, 493.Google Scholar
Payne, P. R. & Stewart, R. J. C. (1972). Lab. Anim. 6, 135.CrossRefGoogle Scholar
Pette, D. (1966). In Symposium on Regulation of Metabolic Processes in Mitochondria: B.B.A. Library Vol. 7, p. 28. New York: Elsevier.Google Scholar
Raggi, A., Ronca-Testoni, S. & Ronca, G. (1969). Biochim. biophys. Acta 178, 619.CrossRefGoogle Scholar
Reeds, P. J. (1974). Br. J. Nutr. 31, 259.CrossRefGoogle Scholar
Ronca, G., Raggi, A. & Ronca-Testoni, S. (1968). Biochim. biophys. Acta 167, 626.CrossRefGoogle Scholar
Sketcher, R. D., Fern, E. B. & James, W. P. T. (1974). Br. J. Nutr. 31, 333.CrossRefGoogle Scholar
Sréter, F. A. & Woo, G. (1963). Am. J. Physiol. 205, 1290.CrossRefGoogle Scholar
Taskar, K. & Tulpule, P. G. (1964). Biochem. J. 92, 391.CrossRefGoogle Scholar
Tornheim, K. & Lowenstein, J. M. (1972). J. biol. Chem. 247, 162.CrossRefGoogle Scholar
Tornheim, K. & Lowenstein, J. M. (1973). J. biol. Chem. 248, 2670.CrossRefGoogle Scholar
Turner, L. V. & Manchester, K. L. (1972). Biochem. J. 128, 803.CrossRefGoogle Scholar
Waterlow, J. C. & Stephen, J. M. L. (1968). Clin. Sci. 35, 287.Google Scholar
Wergedal, J. E. & Harper, A. E. (1964). Proc. Soc. exp. Biol. Med. 116, 600.CrossRefGoogle Scholar
Yamaguchi, M. & Kandatsu, M. (1967). Agric. biol. Chem. J. 31, 776.Google Scholar
Young, V. R. (1970). In Mammalian Protein Metabolism Vol. 4, p. 613 [Munro, H. N., editor]. London: Academic Press.Google Scholar
Young, V. R., Stothers, S. C. & Vilaire, G. (1971). J. Nutr. 101, 1379.Google Scholar