Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T13:44:05.192Z Has data issue: false hasContentIssue false

Changes in serum β-lipoprotein concentration during the development of kwashiorkor and in recovery

Published online by Cambridge University Press:  09 February 2010

W. A. Coward
Affiliation:
Medical Research Council Child Nutrition Unit, PO Box 6717, Kampala, Uganda
R. G Whitehead
Affiliation:
Medical Research Council Child Nutrition Unit, PO Box 6717, Kampala, Uganda
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Serum β-lipoprotein and cholesterol have been measured in children ‘at risk’ to severe protein-calorie malnutrition and in others with kwashiorkor or marasmus. β-Lipoprotein was estimated by an immunological technique. In children recovering from kwashiorkor, serum triglyceride estimations and lipoprotein electrophoretic separations were also carried out.

2. β-Lipoprotein concentrations did not fall significantly until serum albumin concentration was less than 2.5 g/100 ml; cholesterol concentration fell before β-lipoprotein.

3. In frank kwashiorkor, serum β-lipoprotein concentration was reduced by about 30%, whereas cholesterol and triglyceride concentrations were reduced by about 50% in comparison with apparently normal children. Electrophoretic evidence showed that serum α-lipoprotein concentration was also reduced or absent altogether. Marasmic children had normal serum concentrations of β-lipoprotein and the other lipid components measured.

4. The metabolic significance of this degree of reduction in serum β-lipoprotein concentration in the pathogenesis of the fatty liver of kwashiorkor has been discussed. It was concluded that, in Ugandan children with serum albumin concentrations below 2.50 g/100 ml, the β-lipoprotein concentration was probably insufficient for normal mobilization of fat from the liver and the children could therefore be considered susceptible to the development of a fatty liver.

5. The recovery from kwashiorkor was marked by a rapid rise in serum β-lipoprotein concentration and hypertriglyceridaemia but a slower rise in cholesterol concentration. This confirmed the results of previous investigations.

Type
Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1972

References

Chatterjee, K. & Chaudhuri, J. N. (1961). Indian J. Pediat. 28, 195.CrossRefGoogle Scholar
Coward, D. G., Sawyer, M. B. & Whitehead, R. G.. (1971). Am. J. clin. Nutr. 24, 940.CrossRefGoogle Scholar
Cravioto, J., de la Pena, C. L. & Burgos, G. (1959). Metabolism 8, 722.Google ScholarPubMed
Dean, R. F. A. & Schwartz, R. (1953). Br. J. Nutr. 7, 131.CrossRefGoogle Scholar
Eggstein, M. & Kreutz, F. H. (1966). Klin. Wschr. 4, 262.CrossRefGoogle Scholar
Farquhar, J. W., Gross, R. C., Wagner, R. M. & Reaven, G. M. (1965). J. Lipid Res. 6, 119.CrossRefGoogle Scholar
Flores, H., Pak, N., Maccioni, A. & Monckeberg, F. (1967). Abstracts of the 37th Annual Meeting of the Society for Pediatric Research, April 1967, Atlantic City, USA p. 143.Google Scholar
Flores, H., Pak, N., Maccioni, A. & Monckeberg, F. (1970). Br. J. Nutr. 24, 1005.CrossRefGoogle Scholar
Flores, H., Sierralta, W. & Monckeberg, F. (1970). J. Nutr. 100, 375.CrossRefGoogle Scholar
Fredriclcson, D. S., Levy, R. I. & Lees, R. S. (1967 a). New Engl. J. Med. 276, 34.CrossRefGoogle Scholar
Fredrickson, D. S., Levy, R. I. & Lees, R. S. (1967 b). New Engl. J. Med. 276, 94.CrossRefGoogle Scholar
Gelman Instrument Co. (1968). In Gelman Procedures, Techniques, and Apparatus for Electrophoresis p.24.Ann Arbor, Michigan: Gelman Instrument Co.Google Scholar
Gopalan, C. (1968). In Calorie Deficiencies and Protein Deficiencies p.49 [McCancc, R. A. and Widdowson, E. M., editors]. London: J.andA. Churchill Ltd.Google Scholar
Hansen, J. D. L. (1968). In Culorie Deficiencies and Protein Deficiencies p.33 [McCance, R. A. and Widdowson, E. M., editors]. London: J. and A. Churchill Ltd.Google Scholar
Hciskell, C. L., Fisk, R. T., Florsheim, W. H., Tachi, A., Goodman, J. R. & Carpenter, C. M. (1961). Am. J. clin. Path. 35, 222.CrossRefGoogle Scholar
Huang, T. C., Chen, C. P., Wefler, V. & Raftery, A. (1961). Analyt. Chem. 33, 1405.CrossRefGoogle Scholar
Iturra, T. S. (1947). Estudio de los lipidos hep´ticos en lactantes distróficos. MD Thesis, Escuela de Medicina, Universidad de Chile.Google Scholar
Levy, R. I., Lees, R. S. & Fredrickson, D. S. (1966). J. clin. Invest. 45, 63,CrossRefGoogle Scholar
Lewis, B., Hansen, J. D. L., Wittman, W., Krut, L. H. & Stewart, F. (1964). Am.J. clin. Nutr. 15, 161.CrossRefGoogle Scholar
Lombardi, B. & Ugazio, G. (1965). J. Lipid Res. 6, 498.CrossRefGoogle Scholar
Macdonald, I. (1960). Metabolism 9, 838.Google Scholar
Macdonald, I., IIansen, J. D. L. & Bronte-Stewart, R. (1963). Clin. Sci. 24, 55.Google Scholar
Monclieberg, F. (1966). Nutrición Bromatologia Toxicologia 5, 3 I.Google Scholar
Monckeberg, F. (1968). In Calorie Deficiencies and Protein Deficiencies p.91 [McCance, R. A. and Widdowson, E. M., editors]. London: J. and A. Churchill Ltd.Google Scholar
Postma, T. & Stroes, J. A. P. (1968). Clinica chim. Actn 22, 569.CrossRefGoogle Scholar
Schwartz, R. & Dean, R. F. A. (1957). J. trop. Pediat. 3, 23.CrossRefGoogle Scholar
Staff, T. H. E. (1968). E. Afr. med. J. 45, 399.Google Scholar
Sukhatme, P. V. (1970). Br. J. Nutr. 24, 477.CrossRefGoogle Scholar
Truswell, A. S., Hansen, J. D. L., Watson, C. E. & Wannenburg, P. (1969). Am. J. clin. Nutr. 22, 568.CrossRefGoogle Scholar
Volwiler, W., Goldsworthy, P. D., MacMartin, M. P., Wood, P. A., Mackay, I. R. & Fremont-Smith, K. (1955). J. clin. Inzest. 34, 1126.CrossRefGoogle Scholar
Walton, K. W. & Scott, P. J. (1964). J. clin. Path. 17, 627.CrossRefGoogle Scholar
Whitehead, R. G. & Alleyne, G. A. O. (1972). Br. med. Bull. (In the Press.)Google Scholar
Whitehead, R. G., Frood, J. D. L. & Poskitt, E. M. E. (1971). Lancet ii, 287.CrossRefGoogle Scholar