Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T02:49:01.559Z Has data issue: false hasContentIssue false

Changes in lysosomal hydrolase activity associated with malnutrition in young rats

Published online by Cambridge University Press:  24 July 2007

Anne Roobol
Affiliation:
Tropical Metabolism Research Unit and Department of Medicine, University of the West Indies, Mona, Kingston 7, Jamaica
G. A. O Alleyne
Affiliation:
Tropical Metabolism Research Unit and Department of Medicine, University of the West Indies, Mona, Kingston 7, Jamaica
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Total lysosomal hydrolase activities were measured in liver, gastrocnemius muscle and plasma of malnourished and normal rats between 3 and 8 weeks of age.

2. Concurrently, the DNA and protein contents of the livers and muscles were determined.

3. Increased amounts of acid hydrolase activities were found to be associated with subnormal protein: DNA ratios in the tissues of malnourished rats.

4. It was concluded that lysosomal enzymes may be involved in protein catabolism during malnutrition.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1974

References

REFERENCES

Begum, A. & Ittyerah, T. R. (1970). Clinica chim. Acta 28, 263.CrossRefGoogle Scholar
Bessey, O. A., Lowry, O. H. & Brock, M. J. (1946). J. biol. Chem. 164, 321.CrossRefGoogle Scholar
Bird, J. W. C., Berg, T. & Leatham, J. H. (1968). Proc. Soc. exp. Biol. Med. 127, 182.CrossRefGoogle Scholar
Flores, H., Sierralta, W. & Monckeberg, F. (1970). J. Nutr. 100, 375.CrossRefGoogle Scholar
Iodica, A. A. & Weinstock, I. M. (1965). Nature, Lond. 207, 1102.CrossRefGoogle Scholar
Itteyerah, T. R., dumm, M. E. & Bachhawat, B. K. (1967). Clinica chim. Acta 17, 405.CrossRefGoogle Scholar
Kennedy, G. C. (1957). J. Endocr. 16, 9.CrossRefGoogle Scholar
Koszalka, T. R., Mason, K. E. & Krol, G. (1961). J. Nutr. 73, 78.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol Chem. 193, 265.CrossRefGoogle Scholar
Max, S. R., Mayer, R. F. & Vogelsang, L. (1971). Archs Biochem. Biophys. 146, 227.CrossRefGoogle Scholar
Mendes, C. B. & Waterlow, J. C. (1958). Br. J. Mutr. 12, 74.CrossRefGoogle Scholar
Millward, D. J. (1970). Clin. Sci. 39, 591.CrossRefGoogle Scholar
Munro, H. N. (1964). In Mammalian Protein Metabolism Vol. 3, p. 482 [Munro, H. N. and Allison, J. B. editors] London and New York: Academic Press.Google Scholar
Novikoff, A. B., Essner, E. & Quintana, N. (1964). Fedn Proc. Fedn Am. Socs exp. Biol. 23, 1010.Google Scholar
Sawant, P. L., Desai, I. D. & Tappel, A. L. (1964). Biochim biophys. Acta 85, 93.Google Scholar
Spies, J. R. (1957). In Methods in Enzymology Vol. 3, 468[Colowick, S. P. and Kaplan, N. O., editors’. New York: Academic Press.Google Scholar
Tappel, A. L., Zalkin, H., Caldwell, K. A., Desai, I. D., & Shibko, S. (1962). Archs Biochem. Biophys. 96, 340.CrossRefGoogle Scholar
Waterlow, J. C. & Stephen, J. M. L. (1968). Clin. Sci. 35, 287.Google Scholar
Waterlow, J. C. & Alleyne, G. A. O. (1971). Adv. Protein Chem. 25, 117.CrossRefGoogle Scholar
Weissmann, G. (1964). Fedn Proc. Fedn Am. Socs exp. Biol. 23, 1038.Google Scholar
Widdowson, E. M. & McCance, R. A. (1960). Proc. R. Soc. B 152, 188.Google Scholar
Zalkin, H., Tappel, A. L., Caldwell, K. A., Shibko, S., Desai, I. D. & Holliday, T. A. (1962). J. biol. Chem. 237, 2678.CrossRefGoogle Scholar