Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T11:13:40.561Z Has data issue: false hasContentIssue false

Changes in glutathione status and 3,5,3'-triiodothyronine action in livers of rats given cysteine-deficient diets

Published online by Cambridge University Press:  09 March 2007

H. Garcin
Affiliation:
Laboratoire Physiologie de la Nutrition, Département Alimentation et Nutrition, Université de Bordeaux I, Avenue des Facultés, 33405 Talence-Cédex, France
C. Suberville
Affiliation:
Laboratoire Physiologie de la Nutrition, Département Alimentation et Nutrition, Université de Bordeaux I, Avenue des Facultés, 33405 Talence-Cédex, France
P. Higueret
Affiliation:
Laboratoire Physiologie de la Nutrition, Département Alimentation et Nutrition, Université de Bordeaux I, Avenue des Facultés, 33405 Talence-Cédex, France
D. Higueret
Affiliation:
Laboratoire Biochimie Médicale, Hôpital Pellegrin, Place Raba Léon, 33000 Bordeaux, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. For a period of 32 d young rats were given a diet containing (g/kg) 220 casein, 120 casein +1.93 L-cysteine (Cys), or 120 casein.

2. The formation of 3,5,3'-triiodothyronine (T3)-nuclear protein complexes was reduced in rats fed on the Cys-deficient diet.

3. Scatchard analysis showed that decreased formation of T3 -nuclear protein complexes was due to a decreased affinity of T3 receptors; this decrease was induced, at least in part, by a reduced glutathione content.

4. In rats fed on the Cys-deficient diet there was an expected decrease in growth but an unexpected increase in the activities of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) (EC 1.1.1.40). It is suggested that this increase is related to an increased oxidized glutathione: reduced glutathione ratio.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1989

References

Balsam, A. (1974) Augmentation of the peripheral metabolism of L-triiodothyronine and L-thyroxine after acclimatation to cold. Journal of Clinical Investigation 53, 11451156.CrossRefGoogle Scholar
Barsano, C. P. (1983). Quantitation of 3,5,3'-triiodothyronine (T3) receptors by a microcentrifuge exchange assay: evidence for the existence of a nucleoplasmic pool of rat liver T3 receptors. Endocrinology 112, 14791489.CrossRefGoogle Scholar
Bradford, M. M. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle ScholarPubMed
De Groot, L. J. & Torresani, J. (1975) Triiodothyronine binding to isolated liver cell nuclei. Endocrinology 96, 357369.CrossRefGoogle ScholarPubMed
Fabregat, I., Vitorica, J., Satrustegui, J. & Machado, A. (1985) The pentose phosphate cycle is regulated by NADPH/NADP ratio in rat liver. Archives of Biochemistry and Biophysics 236, 110118.CrossRefGoogle ScholarPubMed
Griffith, O. W. (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2- vinyl pyridine. Analytical biochemistry 106, 207212.CrossRefGoogle Scholar
Hosokawa, Y., Niizeki, S., Tojo, H., Sato, I. & Yamaguchi, K. (1988) Hepatic cysteine dioxygenase activity and sulfur amino acid metabolism in rats: possible indicators in the evaluation of protein quality. Journal of Nutrition 118, 456461.CrossRefGoogle ScholarPubMed
Kaplowitz, N., Aw, T. Y. & Ookhtens, M. (1985) The regulation of hepatic glutathione. Annual Review of Pharmacology and Toxicology 25, 715744.CrossRefGoogle ScholarPubMed
King, J. (1965). 6-Phosphogluconate dehydrogenase. In Methods in Enzymatic Analysis, pp. 632635 [Bergmayer, H., editor]. New York: Academic Press.Google Scholar
Labarca, C. & Paigen, K. (1980) A simple and sensitive DNA assay procedure. Analytical Biochemistry 102, 344352.CrossRefGoogle ScholarPubMed
Löhr, G. W. & Waller, H. D. (1965). Glucose 6-phosphate dehydrogenase. In Methods in Enzymatic Analysis pp. 636643. [Bergmayer, H., editor]. New York: Academic Press.Google Scholar
Meister, A. (1982). Glutathione. In The Liver: Biology and Pathobiology, pp. 297306 [Arias, I., Popper, H., Schachter, D. and Shafritz, D. A., editors]. New York: Raven Press.Google Scholar
Nogueira, M., Garcia, G., Mejuto, C. & Freire, M. (1986) Regulation of the pentose phosphate cycle. Biochemical Journal 239, 553558.CrossRefGoogle ScholarPubMed
Nyborg, J. K., Nguyen, A. P. & Spindler, S. R. (1984) Relationship between thyroid and glucocorticoid hormone receptor occupancy, growth hormone gene transcription, and mRNA accumulation. Journal of Biological Chemistry 259, 1237712382.CrossRefGoogle ScholarPubMed
Oppenheimer, J. H., Schwartz, H. L., Mariash, C. N., Kinlaw, W. B., Wong, N. C. W. & Freake, H. C. (1987) Advances in our understanding of thryoid hormone action at the cellular level. Endocrine Reviews 8, 288308.CrossRefGoogle Scholar
Oppenheimer, J. H., Schwartz, H. L. & Surks, M. I. (1974) Tissue differences in the concentration of triiodothyronine nuclear binding sites in the rat liver, kidney, pituitary, heart, brain, spleen and testis. Endocrinology 95, 897903.CrossRefGoogle ScholarPubMed
Scatchard, G. (1949) The attractions of proteins for small molecules and ions. Annals of the New York Academy of Sciences 51, 660672.CrossRefGoogle Scholar
Suberville, C., Higueret, P., Taruoura, D., Higueret, D. & Garcin, H. (1987) Relative contribution of cysteine and methionine to glutathione content and thyroid hormone levels in the rat. British Journal of Nutrition 58, 105111.CrossRefGoogle ScholarPubMed
Suberville, C., Higueret, P., Taruoura, D., Higueret, D. & Garcin, H. (1988) Glutathione deficiency and peripheral metabolism of thyroid hormones during dietary cysteine deprivation in rats. British Journal of Nutrition 59, 451456.CrossRefGoogle ScholarPubMed
Tietze, F. (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione. Application to mammalian blood and other tissues. Analytical Biochemistry 27, 502522.Google ScholarPubMed
Torresani, J., Anselmet, A. & Wahl, R. (1978) Properties of solubilized nuclear triiodothyronine binding proteins. Molecular and Cellular Endocrinology 9, 321333.CrossRefGoogle ScholarPubMed
Torresani, J. & De Groot, L. J. (1975) Triiodothyronine binding to liver nuclear solubilized proteins in vitro. Endocrinology 96, 12011209.CrossRefGoogle ScholarPubMed
Weinberger, C., Thompson, C. C., Ong, E. S., Lebo, R., Gruol, D. J. & Evans, R. M. (1986) The C-erb-A gene encodes a thyroid hormone receptor. Nature 324, 641646.CrossRefGoogle ScholarPubMed
Wise, E. M. Jr. & Ball, E. G. (1964) Malic enzyme and lipogenesis. Proceedings of the National Academy of Sciences, USA 52, 12551263.CrossRefGoogle ScholarPubMed