Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T03:01:49.238Z Has data issue: false hasContentIssue false

Carrageenan-induced granuloma and iron status in rats with dietary polyunsaturated fatty acid deficiency

Published online by Cambridge University Press:  09 March 2007

T. Carbonell
Affiliation:
Departamento de Bioquimica y Fisiologia, Facultad de Biologia, Universidad de Barcelona, Avenida Diagonal 645, E-08071-Barcelona, Spain
M. P. Saiz
Affiliation:
Departamento de Bioquimica y Fisiologia, Facultad de Biologia, Universidad de Barcelona, Avenida Diagonal 645, E-08071-Barcelona, Spain
M. T. Mitjavila
Affiliation:
Departamento de Bioquimica y Fisiologia, Facultad de Biologia, Universidad de Barcelona, Avenida Diagonal 645, E-08071-Barcelona, Spain
P. Puig-Parellada
Affiliation:
Departamento de Farmacologia, Facultad de Medicina, Universidad de Barcelona, E-08028-Barcelona, Spain
C. Cambon-Gros
Affiliation:
Université Paul Sabatier, Institut de Physiologie, INSERM U-87, 31400-Toulouse, France
Y. Fernandez
Affiliation:
Université Paul Sabatier, Institut de Physiologie, INSERM U-87, 31400-Toulouse, France
S. Mitjavila
Affiliation:
Université Paul Sabatier, Institut de Physiologie, INSERM U-87, 31400-Toulouse, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sprague–Dawley rats were fed for 4 months on a control diet or a polyunsaturated-fatty-acid (PUFA)-deficient diet. The combined effects of iron overload (Fe dextran) or Fe deficiency (desferrioxamine) on carrageenan-induced granuloma were studied. PUFA deficiency induced changes in Fe metabolism, but no alterations in lipid peroxidation variables were observed. Inflammation implied an increase in lipid peroxidation, Fe storage and caeruloplasmin concentration, together with symptoms of anaemia. PUFA deficiency in inflamed rats gave rise to a lower inflammatory response (granuloma weight and prostaglandin E2 concentration) and ethane exhalation. Fe overload potentiated inflammatory and lipid peroxidation processes, whereas Fe deficiency decreased them.

Type
Effects of Fatty Acid Deficiency
Copyright
Copyright © The Nutrition Society 1991

References

REFERENCES

Benedetti, A., Comporti, M. & Esterbauer, H. (1980). Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochimica et Biophysica Acta 620, 281296.CrossRefGoogle ScholarPubMed
Blake, D. R., Hall, N. D., Bacon, P. A., Dieppe, P. A., Halliwell, B. & Gutteridge, J. M. C. (1983). Effect of a specific iron chelating agent on animal models of inflammation. Annals of Rheumatic Diseases 42, 8993.CrossRefGoogle ScholarPubMed
Cambon-Gros, C., Fernandez, Y., Mitjavila, M. T., Carbonell, T., Puig-Parellada, P. & Mitjavila, S. (1990). Combined effect of a PUFA deficient diet and iron levels on lipid peroxidation induced by CCl4. Food Additives and Contaminants 7, 51085110.CrossRefGoogle ScholarPubMed
Christon, R., Fernandez, Y., Cambon-Gros, C., Periquet, A., Deltour, P., Leger, C. & Mitjavila, S. (1988). The effect of dietary essential fatty acid deficiency on the composition and properties of the liver microsomal membrane of rats. Journal of Nutrition 112, 13111318.CrossRefGoogle Scholar
Codde, J. P., Beilin, L. J., Croft, K. D. & Vandongen, R. (1985). Study of diet and drug interactions on prostanoid metabolism. Prostaglandins 29, 895910.CrossRefGoogle ScholarPubMed
Davis, P. S. & Deller, D. J. (1966). Prediction and demonstration of iron chelating ability of sugars. Nature 212, 404405.CrossRefGoogle ScholarPubMed
Drabkin, D. L. & Austin, J. H. (1935). Spectrophotometric studies II. Preparation from washed blood cells: nitric oxide hemoglobin and sulphohemoglobin. Journal of Biological Chemistry 112, 5164.CrossRefGoogle Scholar
Drysdale, J. W. & Munro, H. N. (1965). The separation of ferritin and hemosiderin for studies in the metabolism of iron. Biochemical Journal 95, 851858.CrossRefGoogle Scholar
Fukuhara, M. & Tsurufuji, S. (1969). The effect of locally injected anti-inflammatory drugs on the carrageenan granuloma in rats. Biochemical Pharmacology 18, 475484.CrossRefGoogle ScholarPubMed
Goldstein, I. M., Kaplan, H. B., Edelson, H. S. & Weissmann, G. (1979). Caeruloplasmin: a scavenger of superoxide anion radicals. Journal of Biological Chemistry 252, 40404045.CrossRefGoogle Scholar
Gutteridge, J. M. C., Rowley, D. A. & Halliwell, B. (1981). Superoxide-dependent formation of hydroxyl radicals in the presence of iron salts. Biochemical Journal 199, 263265.CrossRefGoogle ScholarPubMed
International Committee for Standardization in Haematology (1971). Proposed recommendations of serum iron in human blood. British Journal of Haematology 20, 451453.CrossRefGoogle Scholar
Konijn, A. M., Carmel, N., Levy, R. & Hershko, C. (1981). Ferritin synthesis in inflammation. II. Mechanism of increased ferritin synthesis. British Journal of Haematology 49, 361370.CrossRefGoogle ScholarPubMed
Kremer, J. M., Bigaouette, J., Michalek, A. V., Timchalk, M. A., Lininger, Ll., Rynes, R. I., Huyck, C., Zieminski, J. & Bartholomew, L. E. (1985). Effects of manipulation of dietary fatty acids on clinical manifestations of rheumatoid arthritis. Lancet i, 184187.CrossRefGoogle Scholar
Kremer, J. M., Jubiz, W., Michalek, A., Rynes, R. I., Bartholomew, L. E., Bigaouette, J., Timchalk, M., Beeler, D. & Lininger, Ll. (1987). Fish-oil fatty acid supplementation in active rheumatoid arthritis. A double-blind, controlled, crossover study. Annals of Internal Medicine 106, 497503.CrossRefGoogle Scholar
Lefkowith, J. B. (1988). Essential fatty acid deficiency inhibits the in vivo generation of leukotriene B4 and suppresses levels of resident and elicited leukocytes in acute inflammation. Journal of Immunology 140, 228233.CrossRefGoogle ScholarPubMed
McColl, M. R., Cleland, L. G., Whitehouse, M. W. & Vernon-Roberts, B. (1987). Effect of dietary polyunsaturated fatty acid (PUFA) supplementation on adjuvant induced polyarthritis in rats. Journal of Rheumatology 14, 197201.Google ScholarPubMed
Miller, R. G. Jr (1966). Simultaneous Statistical Inference. New YorkMcGraw-Hill.Google Scholar
Moncada, S. & Salmon, J. A. (1986). Leukocytes and tissue injury: The use of eicosapentaenoic acid in the control of white cell activation. Wiener Klinische Wochenschrift 98, 104106.Google ScholarPubMed
Monsen, E. R. & Cook, J. D. (1979). Food iron absorption in human subjects. V. Effects of the major dietary constituents of a semisynthetic meal. American Journal of Clinical Nutrition 32, 804808.CrossRefGoogle ScholarPubMed
Morganroth, M. L., Pickett, W. C., Worthen, S., Mathias, M., Reeves, J. T. & Voelkel, N. F. (1987). Decreased pulmonary vascular responsiveness in rats raised on an essential fatty acid deficient diet. Prostaglandins 33, 181197.CrossRefGoogle Scholar
Osaki, S. & Johnson, D. A. (1969). Mobilization of liver iron by ferroxidase (ceruloplasmin). Journal of Biological Chemistry 244, 57575758.CrossRefGoogle ScholarPubMed
Peters, G., Keberle, H., Schmid, K. & Brunner, H. (1966). Distribution and renal excretion of desferrioxamine and ferrioxamine in the dog and in the rat. Biochemical Pharmacology 15, 93109.CrossRefGoogle ScholarPubMed
Rice, E. W. (1961). Evaluation of the role of caeruloplasmin as an acute-phase reactant. Clinica Chimica Acta 6, 652655.CrossRefGoogle ScholarPubMed
Samokyszyn, V. M., Miller, D. M., Reif, D. W. & Aust, S. D. (1989). Inhibition of superoxide and ferritin-dependent lipid peroxidation by ceruloplasmin. Journal of Biological Chemistry 264, 2126.CrossRefGoogle ScholarPubMed
Sunderman, F. W. Jr & Nomoto, S. (1970). Measurement of human serum ceruloplasmin by its p- phenylenediamine oxidase activity. Clinical Chemistry 16, 903910.CrossRefGoogle ScholarPubMed
Terano, T., Salmon, J. A., Higgs, G. A. & Moncada, S. (1986). Eicosapentaenoic acid as a modulator of inflammation. Effect on prostaglandin and leukotriene synthesis. Biochemical Pharmacology 35, 779785.CrossRefGoogle Scholar
Torrance, J. D. & Bothwell, T. M. (1968). A simple technique for measuring storage iron concentrations in formalinized liver samples. South African Journal of Medicine 33, 911.Google Scholar
Van Campen, D. (1974). Regulation of iron absorption. Federation Proceedings 33, 100105.Google ScholarPubMed
Van Dokkum, W., Cloughley, F. A., Hulshof, K. F. A. M. & Oosterven, L. A. M. (1983). Effect of variations in fat and linoleic acid intake on the calcium, magnesium and iron balance of young men. Annals of Nutrition and Metabolism 27, 361369.CrossRefGoogle ScholarPubMed
Winyard, P. G., Blake, D. R., Chirico, S., Gutteridge, J. M. C. & Lunec, J. (1987). Mechanism of exacerbation of rheumatoid synovitis by total-dose iron-dextran infusion: in vivo demonstration of iron-promoted oxidant stress. Lancet i, 6972.CrossRefGoogle Scholar
Yagi, K. (1976). A simple fluorimetric assay for lipoperoxide in blood plasma. Biochemical Medicine 15, 212216.CrossRefGoogle Scholar
Yoshino, S., Blake, D. R. & Bacon, P. A. (1984). The effect of desferrioxamine on antigen-induced inflammation in the rat air pouch. Journal of Pharmacy and Pharmacology 36, 543545.CrossRefGoogle ScholarPubMed
Ziboth, V. A., Vanderhoek, J. T. & Lands, W. M. (1974). Inhibition of sheep vesicular gland oxygenase by unsaturated fatty acids from skin of essential fatty acids deficient rats. Prostaglandins 5, 233240.CrossRefGoogle Scholar