Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T16:33:35.650Z Has data issue: false hasContentIssue false

Carbohydrases of the bovine small intestine

Published online by Cambridge University Press:  09 March 2007

N. B. Coombe
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
R. C. Siddons
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Homogenates of mucosa from bovine small intestine hydrolysed isomaltose slowly.

2. The enzyme exhibited maximum activity at pH 6·0–6·2 and possessed a Km value of 9·1 mM.

3. Isomaltase and maltase activities showed a similar pattern of distribution along the small intestine; activity was higher in the jejunum than in the ileum, the lowest activity being in the duodenum.

4. Neither activity changed markedly with age.

5. The disaccharidase activities (maltase, isomaltase, trehalase, lactase and cellobiase) of the small intestine were found in the sediment when homogenates were centrifuged at 100000g.

6. Heat inactivation studies suggested that there was one enzyme which hydrolysed trehalose, one enzyme which hydrolysed isomaltose, one enzyme which hydrolysed lactose and cellobiose and that the hydrolysis of maltose was brought about by more than one enzyme.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1973

References

Anderson, C. M., Messer, M., Townley, R. R. W., Freeman, M. & Robinson, M. J. (1962). Lancet ii, 556.CrossRefGoogle Scholar
Auricchio, S., Dahlqvist, A. & Semenza, G. (1963). Biochim. biophys. Acta 73, 582.CrossRefGoogle Scholar
Auricchio, S., Rubino, A., Prader, A., Rey, J., Jos, J. & Frezal, J. (1964). Lancet ii, 914.CrossRefGoogle Scholar
Auricchio, S., Rubino, A., Tosi, R., Semenza, G., Landolt, M., Kistler, H. & Prader, A. (1963). Enzymol. biol. clin. 3, 193.CrossRefGoogle Scholar
Auricchio, S., Semenza, G. & Rubino, A. (1965). Biochim. biophys. Acta 96, 498.CrossRefGoogle Scholar
Dahlqvist, A. (1960 a). Acta chem. scand. 14, 9.CrossRefGoogle Scholar
Dahlqvist, A. (1960 b). Acta chem. scand. 14, 72.CrossRefGoogle Scholar
Dahlqvist, A. (1961 a). Acta chem. scand. 15, 808.CrossRefGoogle Scholar
Dahlqvist, A. (1961 b). Biochem. J. 78, 282.CrossRefGoogle Scholar
Dahlqvist, A. (1963). Biochem. J. 86, 72.CrossRefGoogle Scholar
Dahlqvist, A. (1964). Analyt. Biochem. 7, 18.CrossRefGoogle Scholar
Dahlqvist, A., Auricchio, S., Semenza, G. & Prader, A. (1963). J. clin. Invest. 42, 556.CrossRefGoogle Scholar
Doell, R. G. & Kretchmer, N. (1962). Biochim. biophys. Acta 62, 353.CrossRefGoogle Scholar
Eichholz, A. (1966). Proc. Wld Congr. Gastroenterol, III, Tokyo Vol. 2, p. 296 (Recent Advances in Gastroenterology).Google Scholar
Gray, G. M. (1971). A. Rev. Med. 22, 391.CrossRefGoogle Scholar
Johnson, C. F. (1967). Science, N. Y. 155, 1670.CrossRefGoogle Scholar
Kolinská, J. & Semenza, G. (1967). Biochim. biophys. Acta 146, 181.CrossRefGoogle Scholar
Lineweaver, H. & Burk, D. (1934). J. Am. chem. Soc. 56, 658.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
Rubino, A., Zimbalatti, F. & Auricchio, S. (1964). Biochim. biophys. Acta 92, 305.Google Scholar
Semenza, G. (1968). In Handbook of Physiology Sect. 6 Alimentary Cananl p. 2637 [Code, C. F, editor]. Washington, DC: American Physiological Society.Google Scholar
Semenza, G., Auricchio, S. & Rubino, A. (1965). Biochim. biophys. Acta 96, 487.CrossRefGoogle Scholar
Siddons, R. C. (1968). Biochem. J. 108, 839.CrossRefGoogle Scholar
White, A., Handler, P. & Smith, E. L. (1968). In Principles of Biochemistry 4th ed., p. 234. London: McGraw-Hill.Google Scholar