Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T02:14:17.607Z Has data issue: false hasContentIssue false

The capacity of the mature cow to lose and recover nitrogen and the significance of protein reserves

Published online by Cambridge University Press:  24 July 2007

R. Paquay
Affiliation:
Department of Animal Physiology, Faculty of Veterinary Medicine, Cureghem, 1070 Brussels, Belgium
R. De Baere
Affiliation:
Department of Animal Physiology, Faculty of Veterinary Medicine, Cureghem, 1070 Brussels, Belgium
A. Lousse
Affiliation:
Department of Animal Physiology, Faculty of Veterinary Medicine, Cureghem, 1070 Brussels, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Six experiments were undertaken with mature, dry, non-pregnant cows to determine the capacity to lose and recover nitrogen and to study the significance of the labile and total protein reserves.

2. It was concluded that, without altering its ability to reach N equilibrium, the mature cow is able to store and lose large amounts of body proteins (certainly more than 15 kg), when its N and energy intakes are greatly varied. The repletion or depletion of protein reserves can occur over a long period of time (sometimes more than 5 months). Total protein reserves include a very labile part. This part is more rapidly lost during fasting than during feeding on low-protein diets; it can be used to meet temporarily the energy requirements of the animal.

3. N balance and body-weight gains were generally very well correlated.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1972

References

Agricultural Research Council (1965). The Nutrient Requirements of Farm Lizwstock. No. 2. Ruminants. London: Agricultural Research Council.Google Scholar
Allison, J. B. (1964). In Mammalian Protein Metabolism Vol.2 p. 41 [Munro, H. N. and Allison, J. B., editors]. New York and London: Academic Press.Google Scholar
Allison, J. B. & Wannemacher, R. W. Jr. (1965). Am. J. clin. Nutr. 16, 445.Google Scholar
Allison, J. B., Wannemacher, R. W. Jr., Banks, W. L. Jr. & Wunner, W. H. (1964).J. Nuty. 84, 383.Google Scholar
Association of Official Agricultural Chemists (1965). Official Methods of Analysis. Washington, DC: Association of Official Agricultural Chemists.Google Scholar
Butterfield, R. M. (1966). Res. vet. Sci. 7, 168.Google Scholar
De Baere, R., Paquay, R. & Lousse, A. (1966). Annls Méd. vét. 110, 81.Google Scholar
Fisher, H., Grun, J., Shapiro, R. & Ashley, J. (1964). J. Nutr. 83, 165.Google Scholar
Fritz, I. (1956). Endocrinology 58, 493.Google Scholar
Gopalan, C. & Nasaringa Rao, B. S. (1966). J. Nutr. 90, 213.CrossRefGoogle Scholar
Keenan, D. M. & McManus, W. R. (1969). J. agric. Sci., Camb. 72, 139.CrossRefGoogle Scholar
Kellner, O. & Becker, M. (1962). Grundzüge der Fütterungslehre 13th ed. Hamburg and Berlin: Verlag Paul Parey.Google Scholar
Kirton, A. H., Quartermain, A. R., Uljee, A. E., Carter, W. A. & Pickering, F. S. (1968). N.Z. Flagric. Res. 11, 891.Google Scholar
Kosterlitz, H. W. & Campbell, K. M. (1945). J. Physiol., Lond. 104, 16.Google Scholar
Paquay, R. (1968). Les réserves azotécs chez les bovins ct les facteurs alimentaires qui les influencent. Dr. Sci. Agron. Thesis Université.Catholique de Louvain.Google Scholar
Paquay, R., De Baere, R. & Lousse, A. (1967). Annls Méd. vét. 111, 84.Google Scholar
Robinson, D. W. (1965). Br. vet. J. 121, 350.CrossRefGoogle Scholar
Seebcck, R. M. & Tulloh, N. M. (1969). Aust. J. agyic. Res. 20, 199.Google Scholar
Voit, C. (1866). Z. Biol. 2, 307.Google Scholar
Walker, D. M. & Cook, L. J. (1967). Br.J. Nutr. 21, 237.CrossRefGoogle Scholar
Walker, D. M. & Faichney, G. J. (1964). Br.J. Nutr. 18, 187.Google Scholar
Wannemacher, R. W., Cooper, W. K. & Yatvin, M. B. (1968). Biochem. J. 107, 615.Google Scholar