Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T01:06:39.338Z Has data issue: false hasContentIssue false

Blood glucose, plasma insulin and sensory responses to guar-containing wheat breads: effects of molecular weight and particle size of guar gum

Published online by Cambridge University Press:  09 March 2007

Peter R. Ellis
Affiliation:
Department of Food and Nutritional Sciences, King's College London (University of London), Campden Hill Road, LondonW8 7AH
Fathy M. Dawoud
Affiliation:
Department of Food and Nutritional Sciences, King's College London (University of London), Campden Hill Road, LondonW8 7AH
Edwin R. Morris
Affiliation:
Department of Food Research and Technology, Silsoe College, Silsoe, Bedford MK45 4DT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effectiveness of guar gum in reducing post-prandial blood glucose and plasma insulin levels in human subjects seems to depend mainly on its ability to increase the viscosity of digesta in the small intestine. However, the precise relationship between the rheological properties of guar gum (either in vitro or in vivo) and the changes in blood metabolites and hormones is unknown. The aim of the present study, therefore, was to investigate the effects of wheat breads containing guar gum samples varying in molecular weight (Mw) and particle size (characteristics that strongly influence the rheological properties of guar gum) on post-prandial blood glucose and plasma insulin levels in healthy subjects. The sensory qualities of breads containing guar-gum flours of different Mw were also evaluated using a hedonic scoring technique. No significant differences in the post-prandial blood glucose responses were found between the control and guar breads. However, all the guar breads elicited significant (P < 0.05) decreases in the post-prandial rise in plasma insulin, an effect that did not appear to be influenced by large variations in Mw or particle size of guar gum. Moreover, the sensory qualities of guar bread were markedly improved by using low Mw grades of guar gum.

Type
Kinetics of Digestion and Absorption
Copyright
Copyright © The Nutrition Society 1991

References

REFERENCES

Apling, E. C. & Ellis, P. R. (1982). Guar bread: concept to application. Chemistry and Industry pp. 950954.Google Scholar
Aro, A., Uusitupa, M., Voutilainen, E., Hersio, K., Korhonen, T. & Siitonen, O. (1981). Improved diabetic control and hypo-cholesterolaemic effect induced by long-term dietary supplementation with guar gum in type 2 (insulin independent) diabetes. Diabetologia 21, 2933.CrossRefGoogle Scholar
Baines, Z. V. & Morris, E. R. (1987). Flavour/taste perception in thickened systems: the effect of guar gum above and below c*. Food Hydrocolloids 1, 197205.CrossRefGoogle Scholar
Baker, P. (1988). Placebo-controlled trial of guar in poorly controlled Type II diabetes. Practical Diabetes 5, 3638.CrossRefGoogle Scholar
Blackburn, N. A., Redfern, J. S., Jarjis, H., Holgate, A. M., Hanning, I., Scarpello, J. H., Johnson, I. T. & Read, N. W. (1984). The mechanism of action of guar gum in improving glucose tolerance in man. Clinical Science 66, 329336.CrossRefGoogle ScholarPubMed
Burrin, J. M. & Alberti, K. G. M. M. (1990). What is blood glucose: can it be measured? Diabetic Medicine 7, 199206.CrossRefGoogle ScholarPubMed
Collier, G., McLean, A. & O'Dea, K. (1984). Effect of co-ingestion of fat on the metabolic responses to slowly and rapidly absorbed carbohydrates. Diabetologia 26, 5054.CrossRefGoogle ScholarPubMed
Collier, G. & O'Dea, K. (1983). The effect of coingestion of fat on the glucose, insulin, and gastric inhibitory polypeptide responses to carbohydrate and protein. American Journal of Clinical Nutrition 37, 941944.CrossRefGoogle ScholarPubMed
Dawoud, F. M. (1989). High-fibre wheat breads for the management of diabetes: product development, physiological testing and sensory evaluation. PhD Thesis, University of London.Google Scholar
Ebling, P., Hannele, Y.-J., Aro, A., Helve, E., Sinisalo, M. & Koivisto, V. A. (1988). Glucose and lipid metabolism and insulin sensitivity in type 1 diabetes: the effect of guar gum. American Journal of Clinical Nutrition 48, 98103.CrossRefGoogle Scholar
Edwards, C. A., Johnson, I. T. & Read, N. W. (1988). Do viscous polysaccharides slow absorption by inhibiting diffusion or convection? European Journal of Clinical Nutrition 42, 307312.Google ScholarPubMed
Edwards, C. A. & Read, N. W. (1990). Fibre and small intestinal function. In Dietary Fibre Perspectives 2, pp. 5275 [Leeds, A. R., editor]. London: John Libbey.Google Scholar
Egan, H., Kirk, R. S. & Sawyer, R. (1981). Pearson's Chemical Analysis of Foods, 8th ed. Edinburgh: Churchill Livingstone.Google Scholar
Ellis, P. R. & Apling, E. C. (1983). The development and acceptability of guar-bran bread. In Proceedings of the 7th World Cereal and Bread Congress, Prague, 1982, pp. 11211126 [Holas, J. and Kratochvil, J., editors]. Amsterdam: Elsevier.Google Scholar
Ellis, P. R., Apling, E. C., Leeds, A. R. & Bolster, N. R. (1981). Guar bread: acceptability and efficacy combined. Studies on blood glucose, serum insulin and satiety in normal subjects. British Journal of Nutrition 46, 267276.CrossRefGoogle ScholarPubMed
Ellis, P. R., Burley, V. J., Leeds, A. R. & Peterson, D. B. (1988 a). A guar-enriched wholemeal bread reduces postprandial glucose and insulin responses. Journal of Human Nutrition and Dietetics 1, 7784.CrossRefGoogle Scholar
Ellis, P. R., Kamalanathan, T., Dawoud, F. M., Strange, R. N. & Coultate, T. P. (1988 b). Evaluation of guar biscuits for use in the management of diabetes: tests of physiological effects and palatability in non-diabetic volunteers. European Journal of Clinical Nutrition 42, 425435.Google ScholarPubMed
Ellis, P. R. & Morris, E. R. (1991). Importance of the rate of hydration of pharmaceutical preparations of guar gum: a new in vitro monitoring method. Diabetic Medicine 8, 378381.CrossRefGoogle ScholarPubMed
Ellis, P. R., Morris, E. R. & Low, A. G. (1986). Guar gum: the importance of reporting data on its physico-chemical properties. Diabetic Medicine 3, 490491.CrossRefGoogle ScholarPubMed
Englyst, H., Wiggins, H. S. & Cummings, J. H. (1982). Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 107, 307318.CrossRefGoogle ScholarPubMed
Fairchild, R. M., Daniels, C. E. J., Ellis, P. R., Naqvi, S. H. M., Kwan, R. M. F. & Mir, M. A. (1990). Effect of two types of guar gum in solid and liquid foods on postprandial blood glucose, plasma insulin and C-peptide in healthy subjects. Proceedings of the Nutrition Society 49, 54A.Google Scholar
Fuessl, S., Adrian, T. E., Bacarese-Hamilton, A. J. & Bloom, S. R. (1986). Guar in NIDD: effect of different modes of administration on plasma glucose and insulin responses to a starch meal. Practical Diabetes 3, 258260.CrossRefGoogle Scholar
Fuessl, H. S., Williams, G., Adrian, T. E. & Bloom, S. R. (1987). Guar sprinkled on food: effect on glycaemic control, plasma lipids and gut hormones in non-insulin-dependent diabetic patients. Diabetic Medicine 4, 463468.CrossRefGoogle ScholarPubMed
Gatenby, S. J., Ellis, P. R., Morgan, L. M., Dawoud, F. M. & Judd, P. A. (1991). The effect of low, medium and high molecular weight grades of guar gum on postprandial blood glucose and plasma insulin in non-insulin-dependent diabetics. Proceedings of the Nutrition Society 50, 58A.Google Scholar
Gulliford, M. C., Bicknell, E. J. & Scarpello, J. H. (1989). Differential effect of protein and fat ingestion on blood glucose responses to high- and low-glycemic-index carbohydrates in noninsulin-dependent diabetic subjects. American Journal of Clinical Nutrition 50, 773777.CrossRefGoogle ScholarPubMed
Häglund, B.-O., Elisson, M. & Sundelöf, L.-O. (1988). Diffusion permeability in concentrated polymer solutions. The fluorescein-dextran-water system. Chemica Scripta 28, 129131.Google Scholar
Holm, J., Lundquist, I., Björk, I., Eliasson, A.-C. & Asp, N.-G. (1988). Degree of starch gelatinisation, digestion rate of starch in vitro, and metabolic responses in rats. American Journal of Clinical Nutrition 47, 10101016.CrossRefGoogle Scholar
Holman, R. R., Steemson, J., Darling, P. & Turner, R. C. (1987). No glycaemic benefit from guar administration in NIDDM. Diabetes Care 10, 6871.CrossRefGoogle ScholarPubMed
Jarjis, H. A., Blackburn, N. A., Redfern, J. S. & Read, N. W. (1984). The effect of ispaghula (Fybogel and Metamucil) and guar gum on glucose tolerance in man. British Journal of Nutrition 51, 371378.CrossRefGoogle ScholarPubMed
Jenkins, D. J. A., Leeds, A. R., Gassull, M. A., Cochet, B. & Alberti, K. G. M. M. (1977). Decrease in postprandial insulin and glucose concentrations by guar and pectin. Annals of Internal Medicine 86, 2023.CrossRefGoogle ScholarPubMed
Jenkins, D. J. A., Leeds, A. R., Gassull, M. A., Wolever, T. M. S., Goff, D. V.,. Alberti, K. G. M. M. & Hockaday, T. D. R. (1976). Unabsorbable carbohydrates and diabetes: decreased post-prandial hyper-glycaemia. Lancet ii, 172174.CrossRefGoogle Scholar
Land, D. G. & Shepherd, R. (1988). Scaling and ranking methods. In Sensory Analysis of Foods, pp. 155185 [Piggott, J. R., editor]. London: Elsevier.Google Scholar
Lauer, O. (1966). Grain Size Measurements on Commercial Powders. Ausberg: Alpine AG Ausberg.Google Scholar
Low, A. G., Zebrowska, T., Heppell, L. M. J. & Smith, H. A. (1986). Influence of wheat bran, cellulose, pectin and low or high viscosity guar gum on glucose and water absorption from the pig jejunum. Proceedings of the Nutrition Society 45, 55A.Google Scholar
Morgan, L. M., Flatt, P. R. & Marks, V. (1988). Nutrient regulation of the entero-insular axis and insulin secretion. Nutrition Research Reviews 1, 7997.CrossRefGoogle Scholar
Morgan, L. M., Tredger, J. A., Madden, A., Kwasowski, P. & Marks, V. (1985). The effect of guar gum on carbohydrate-, fat- and protein-stimulated gut hormone secretion: modification of post-prandial gastric inhibitory polypeptide and gastrin responses. British Journal of Nutrition 53, 467475.CrossRefGoogle Scholar
Morris, E. R. (1984). Rheology of hydrocolloids. In Gums and Stabilisers for the Food Industry 2, pp. 5778 [Philips, G. O., Wedlock, D. J. and Williams, P. A., editors]. Oxford: Pergamon Press.Google Scholar
Morris, E. R., Cutler, A. N., Ross-Murphy, D. A., Rees, D. A. & Price, J. (1981). Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydrate Polymers 1, 521.CrossRefGoogle Scholar
O'Connor, N., Tredger, J. & Morgan, L. (1981). Viscosity differences between various guar gums. Diabetologia 20, 612615.CrossRefGoogle ScholarPubMed
Paul, A. A. & Southgate, D. A. T. (1978). McCance & Widdowson's The Composition of Foods, 4th ed. London: H.M. Stationery Office.Google Scholar
Peterson, D. B., Ellis, P. R., Baylis, J. M., Fielden, P., Ajodhia, J., Leeds, A. R. & Jepson, E. M. (1987). Low dose guar in a novel food product: improved metabolic control in non-insulin-dependent diabetes. Diabetic Medicine 4, 111115.CrossRefGoogle Scholar
Rerat, A. A., Vaissade, P. & Vaugelade, P. (1984). Absorption kinetics of some carbohydrates in conscious pigs. 1. Qualitative aspects. British Journal of Nutrition 51, 505515.CrossRefGoogle ScholarPubMed
Roberts, F. G., Low, A. G., Young, S., Smith, H. A. & Ellis, P. R. (1991). The effect of high viscosity guar gum flour on the rate of glucose absorption and net insulin production in the portal blood of the pig. Proceedings of the Nutrition Society 50, 72A.Google Scholar
Roberts, F. G., Smith, H. A., Low, A. G. & Ellis, P. R. (1990 a). Influence of wheat breads containing guar flour supplements of high and low molecular weights on viscosity of jejunal digesta in the pig. In Dietary Fibre: Chemical and Biological Aspects, pp. 164168 [Southgate, D. A. T.Waldren, K.Johnson, I. T. and Fenwick, G. R., editors]. Cambridge: The Royal Society of Chemistry.Google Scholar
Roberts, F. G., Smith, H. A., Low, A. G., Ellis, P. R., Morris, E. R. & Sambrook, I. E. (1990 b). Influence of guar gum flour of different molecular weights on viscosity of jejunal digesta in the pig. Proceedings of the Nutrition Society 49, 53A.Google Scholar
Robinson, G., Ross-Murphy, S. B. & Morris, E. R. (1982). Viscosity-molecular weight relationships, intrinsic chain flexibility and dynamic solution properties of guar galactomannan. Carbohydrate Research 107, 1732.CrossRefGoogle Scholar
SAS Institute Inc. (1985). SAS User's Guide: Statistics, 5th ed. Cary, North Carolina: SAS Institute Inc.Google Scholar
Seaman, J. K. (1980). Guar gum. In Handbook of Water-soluble Gums and Resins, pp. 118 [Davidson, R. L., editor]. New York: McGraw-Hill.Google Scholar
Soeldner, J. S. & Slone, D. (1965). Critical variables in the radioimmunoassay of serum insulin using the double antibody technique. Diabetes 14, 771779.CrossRefGoogle Scholar
Thomson, D. M. H. & McEwan, J. A. (1985). Predictive modelling and evaluation of food acceptability. In Consumer Behaviour Research and Marketing of Agricultural Products, pp. 6382 [Frijters, J. E. R., editor]. The Hague: National Council for Agricultural Research.Google Scholar
Uusitupa, M., Siitonen, O., Savolainen, K., Silvasti, M., Penttilä, I. & Parviainen, M. (1989). Metabolic and nutritional effects of long-term use of guar gum in the treatment of noninsulin-dependent diabetes of poor metabolic control. American Journal of Clinical Nutrition 49, 345351.CrossRefGoogle ScholarPubMed
Werner, W., Rey, H. G. & Wielinger, H. (1970). On the properties of a new chromagen for the determination of glucose in blood according to the GOD/POD methods (German). Zeitschrift für Analytische Chemie 252, 224228.CrossRefGoogle Scholar