Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T04:11:22.119Z Has data issue: false hasContentIssue false

Blood flow and nutrient exchange across the liver and gut of the dairy cow

Effects of lactation and fasting

Published online by Cambridge University Press:  09 March 2007

M. A. Lomax
Affiliation:
Agricultural Research Council, Institute for Research on Animal Diseases, Compton, Newbury RG16 0NN, Berkshire
G. D. Baird
Affiliation:
Agricultural Research Council, Institute for Research on Animal Diseases, Compton, Newbury RG16 0NN, Berkshire
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The rate of blood flow in the portal and hepatic veins, and the net exchange across the gut and liver of volatile fatty acids (VFA), glucose, lactate, pyruvate, amino acids, ketone bodies, glycerol, non-esterified fatty acids (NEFA) and oxygen, were measured in lactating and non-lactating cows (a) in the normal, fed state and (b) before, during and after 6 d of fasting.

2. Blood flow rate through the liver was 52% higher in normal, fed, lactating cows as compared with non-lactating cows, and was decreased by fasting in both groups of cows. Portal blood flow rate increased with an increase in metabolizable energy (ME) intake.

3. Lactating, as compared with non-lactating, cows exhibited lower arterial concentrations of glucose and lactate, higher net portal outputs of VFA and ketone bodies, a higher net hepatic output of glucose, and higher net hepatic uptakes of propionate and lactate. The splanchnic outputs of acetate, glucose and hydroxybutyrate were all apparently greater in the lactating cows.

4. Fasting caused a rapid decrease in the blood concentrations of the VFA and an increase in those of glycerol and NEFA. The portal, i.e. gut, outputs of VFA, lactate, ketone bodies, alanine and (serine+threonine), and the portal uptake of O2, were all decreased by fasting. Fasting for 6 h also decreased the hepatic output of glucose and acetate by 77 and 95% respectively, increased the hepatic uptake of pyruvate, glycerol and NEFA, and doubled hepatic ketone-body output. The splanchnic output of acetate and glucose and the splanchnic uptake of O2 were also decreased by fasting.

5. The net portal outputs of VFA, lactate and hydroxybutyrate, and the net hepatic output of glucose, were all correlated with ME intake in fed and fasted cows. Hepatic glucose output was also correlated with milk yield.

6. The net hepatic uptake of gluconeogenic precursors measured in this study could account for net hepatic glucose output in the fasted cows, but not in the fed cows. The net hepatic uptake of the ketogenic precursors butyrate and NEFA was sufficient to account for the hepatic output of ketone bodies in both fed and fasted cows, but it is unlikely that the hepatic uptake of ketogenic precursors could also account for the observed hepatic output of acetate.

Type
Paper on General Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

Baird, G. D. (1977). Biochem. Soc. Trans. 5, 819.CrossRefGoogle Scholar
Baird, G. D. & Heitzman, R. J. (1970). Biochem. J. 116, 865.CrossRefGoogle Scholar
Baird, G. D., Heitzman, R. J., Reid, I. M., Symonds, H. W. & Lomax, M. A. (1979). Biochem. J. 178, 35.CrossRefGoogle Scholar
Baird, G. D., Lomax, M. A., Symonds, H. W. & Shaw, S. R. (1980). Biochem. J. 186, 47.CrossRefGoogle Scholar
Baird, G. D., Symonds, H. W. & Ash, R. (1975). J. agric. Sci., Camb. 85, 281.CrossRefGoogle Scholar
Bauman, D. E., Davis, C. L. & Bucholtz, H. F. (1971). J. Dairy Sci. 54, 1282.CrossRefGoogle Scholar
Bensadoun, A., Paladines, O. L. & Reid, J. T. (1962). J. Dairy Sci. 45, 1203.CrossRefGoogle Scholar
Bergman, E. N., Katz, M. L. & Kaufmann, C. F. (1970). Am. J. Physiol. 219, 785.CrossRefGoogle Scholar
Bergman, E. N., Starr, D. J. & Renlein, S. S. (1968). Am. J. Physiol. 215, 874.CrossRefGoogle Scholar
Bergman, E. N. & Wolff, J. E. (1971). Am. J. Physiol. 221, 586.CrossRefGoogle Scholar
Bergmeyer, H. U., Bernt, E., Schmidt, F. & Stork, H. (1974). In Methods of Enzymatic Analysis, 2nd ed., vol. 3. p. 1196 [Bergmeyer, H. U., editor]. London and New York: Academic Press.Google Scholar
Bernt, E. & Bergmeyer, H. U. (1974). In Methods of Enzymatic Analysis, 2nd ed., vol. 4. p. 1704 [Bergmeyer, H. U., editor]. London and New York: Academic Press.CrossRefGoogle Scholar
Bock, A. V., Field, H. & Adair, G. S. (1924). J. biol. Chem. 59, 353.CrossRefGoogle Scholar
Bruckental, I., Oldham, J. D. & Sutton, J. D. (1980). Br. J. Nutr. 44, 33.CrossRefGoogle Scholar
Costa, N. D., McIntosh, G. H. & Snoswell, A. M. (1976). Aust. J. biol. Sci. 29, 33.CrossRefGoogle Scholar
Eggstein, M. & Kuhlmann, E. (1974). In Methods of Enzymatic Analysis, 2nd ed., vol. 4. p. 1825. [Bergmeyer, H. U., editor]. London and New York: Academic Press.CrossRefGoogle Scholar
Garber, A. J., Menzel, P. H., Boden, G. & Owen, O. E. (1974). J. clin. Invest. 54, 981.CrossRefGoogle Scholar
Harvey, R. B. & Brothers, A. J. (1962). Ann. N. Y. Acad. Sci. 102, 46.CrossRefGoogle Scholar
Herbein, J. H., Van Maanen, R. W., McGilliard, A. D. & Young, J. W. (1978). J. Nutr. 108, 994.CrossRefGoogle Scholar
Huntington, G. B., Prior, R. L. & Britton, R. A. (1981). J. Nutr. 111, 1164.CrossRefGoogle Scholar
Katz, M. L. & Bergman, E. N. (1969). Am. J. Physiol. 216, 946.CrossRefGoogle Scholar
Lomax, M. A. (1979). Net portal and hepatic metabolism in the dairy cow in vivo. PhD Thesis, University of Reading.Google Scholar
Lund, P. (1974). In Methods of Enzymatic Analysis, 2nd ed., vol. 4. p. 1719. [Bergmeyer, H. U., editor]. London and New York: Academic Press.Google Scholar
Ministry of Agricultur., Fisheries and Food (1975). Tech. Bull. Minist. Agric. Fish. Fd no. 33.Google Scholar
Pennington, R. J. (1952). Biochem. J. 51, 251.CrossRefGoogle Scholar
Pethick, D. W., Lindsay, D. B., Barker, P. J. & Northrop, A. J. (1981). Br. J. Nutr. 46, 97.CrossRefGoogle Scholar
Reid, I. M., Collins, R. A., Baird, G. D., Roberts, C. J. & Symonds, H. W. (1979). J. agric. Sci., Camb. 93, 253.CrossRefGoogle Scholar
Snoswell, A. M., Costa, N. D., McLean, J. G., Baird, G. D., Lomax, M. A. & Symonds, H. W. (1978). J. Dairy Res. 45, 331.CrossRefGoogle Scholar
Steel, J. W. & Leng, R. A. (1973). Br. J. Nutr. 30, 475.CrossRefGoogle Scholar
Symonds, H. W. & Baird, G. D. (1973). Res. vet. Sci. 14, 267.CrossRefGoogle Scholar
Thompson, G. E., Bassett, J. M. & Bell, A. W. (1978). Br. J. Nutr. 39, 219.CrossRefGoogle Scholar
Webster, A. J. F., Osuji, P. O., White, F. & Ingram, J. F. (1975). Br. J. Nutr. 34, 125.CrossRefGoogle Scholar
Weekes, T. E. C. & Webster, A. J. F. (1975). Br. J. Nutr. 33, 425.CrossRefGoogle Scholar
Williamson, D. H. (1974 a). In Methods of Enzymatic Analysis, 2nd ed., vol. 4. p. 1679 [Bergmeyer, H. U., editor]. London and New York: Academic Press.CrossRefGoogle Scholar
Williamson, D. H. (1974 b). In Methods of Enzymatic Analysis, 2nd ed., vol. 3. p. 1727 [Bergmeyer, H. U., editor]. London and New York: Academic Press.CrossRefGoogle Scholar
Wiltrout, D. W. & Satter, L. D. (1972). J. Dairy Sci. 55, 307.CrossRefGoogle Scholar