Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T16:03:36.006Z Has data issue: false hasContentIssue false

Biological activities of bovine glycomacropeptide

Published online by Cambridge University Press:  09 March 2007

Ernest P. Brody*
Affiliation:
Land O'Lakes, Inc. PO Box 64101, St Paul MN 55164–0101, USA
*
*Corresponding author: E. P. Brody, fax +1 651 481 2002, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Biological activity of bovine κ-caseino glycomacropeptide (GMP) has received much attention in recent years. Research has focused on the ability of GMP to bind cholera and Escherichia coli enterotoxins, inhibit bacterial and viral adhesion, suppress gastric secretions, promote bifidobacterial growth and modulate immune system responses. Of these, protection against toxins, bacteria, and viruses and modulation of the immune system are the most promising applications.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2000

References

Aleinik, SI, Stan, EYa and & Chernikov, MP (1986) Study of the mechanism of acid secretion inhibition with κ-casein peptides in the stomach. Fiziologicheskii Zhurnal SSSR 72, 799803.Google Scholar
Azuma, N, Yamauchi, K and & Mitsouka, T (1985) Bifidius growth-promoting activity of a glycomacropeptide derived from human κ-casein. Agricultural and Biological Chemistry 48, 21592162.Google Scholar
Berrocal, R &, Neeser, J-R (1993) Production of kappa-caseino-glycomacropeptide. United States Patent 5216129.Google Scholar
Beucher, S, Levenez, F, Yvon, M and & Corring, T (1994) Effect of gastric digestive products from casein on CCK release by intestinal cells in rat. Journal of Nutritional Biochemistry 5, 578584.CrossRefGoogle Scholar
Beucher, S, Levenez, F, Yvon, M and & Corring, T (1994) Effect of caseinomacropeptide (CMP) on cholecystokinin (CCK) release in rat. Reproduction Nutrition Development 34, 613614.CrossRefGoogle Scholar
Bezkorovainy, A, Grolich, D and & Nichols, JH (1979) Isolation of a glycopolypeptide fraction with Lactobacillus subspecies pennsylvanicus growth-promoting activity from whole human milk casein. American Journal of Clinical Nutrition 32, 14281432.CrossRefGoogle ScholarPubMed
Chernikov, MP and & Stan, EYa (1982) Physiological activity of products of limited κ-casein proteolysis. XXI International Dairy Congress 2, 161.Google Scholar
Clare, R (1998) The benefits of CMP. Dairy Industries International 63, 2931.Google Scholar
Coolbear, KP, Elgar, DF, Coolbear, T and & Ayers, JS (1996) Comparative study of methods for the isolation and purification of bovine κ-casein and its hydrolysis by chymosin. Journal of Dairy Research 63, 6171.CrossRefGoogle ScholarPubMed
Doi, H, Ibuki, F and & Kanamori, M (1979) Hetrogeneneity of reduced bovine κ-casein. Journal of Dairy Science 62, 195293.CrossRefGoogle Scholar
Doi, H, Kobatake, H, Fumio, I and & Kanamori, M (1980) Attachment sites of carbohydrate portions to peptide chain of κ-casein from bovine colostrum. Agricultural and Biological Chemistry 44, 26052611.CrossRefGoogle Scholar
Dosako, S, Nishiya, T & & Deya, E (1991) Process for the production of kappa-casein glycomacropeptide. United States Patent 5061622.Google Scholar
Dosako, S, Kusano, H, Deya, E & & Idota, T (1992) Infection protectant. United States Patent 5147853.Google Scholar
Eigel, WN, Butler, JE, Ernstrom, CA, Farrell, HM, Harwalkar, VR, Jenness, R and & Whitney, RMcL (1984) Nomenclature of proteins of cow's milk: fifth revision. Journal of Dairy Science 67, 15991631.CrossRefGoogle Scholar
Erdman, P & & Neumann, AG (1999) Method for treating a lactic raw material containing GMP. European Patent 880902.Google Scholar
Etzel, MR (1999) Production of kappa-casein macropeptide. World Patent 9918808.Google Scholar
Eustache, J-M (1977 a) Extraction of glycoproteins and sialic acid from whey. United States Patent 4042576.Google Scholar
Eustache, J-M (1977 b) Extraction of glycoproteins and sialic acid from whey. United States Patent 4042575.Google Scholar
Faure, J-C, Schellenberg, DA, Bexter, A and & Wuerzner, HP (1984) Barrier effect of Bifidobacterium longum on a pathogenic Escherichia coli strain by gut colonization in the germ-free rat. Zeitschrift fur Ernahrungswissenschaft 23, 4151.CrossRefGoogle ScholarPubMed
Fiat, A-M, Alais, C and & Jolles, P (1972) The amino-acid and carbohydrate sequences of a short glycopeptide isolated from bovine κ-casein. European Journal of Biochemistry 27, 408412.CrossRefGoogle Scholar
Fiat, A-M and & Jolles, P (1989) Caseins of various origins and biologically active casein peptides and oligosaccharides: structural and physiological aspects. Molecular and Cellular Biochemistry 87, 530.CrossRefGoogle ScholarPubMed
Fiat, A-M, Jolles, J, Loucheux-Lefebvre, M-H, Alais, C and & Jolles, P (1981) Localization of the prosthetic sugar groups of bovine colostrum κ-casein. Hoppe-Seyler's Zeitschrift fur Physiologische Chemie 362, 14471454.CrossRefGoogle ScholarPubMed
Fournet, B, Fiat, A-M, Alais, C and & Jolles, P (1979) Cow κ-casein: structure of the carbohydrate portion. Biochimica et Biophysica Acta 576, 339346.CrossRefGoogle ScholarPubMed
Fournet, B, Fiat, A-M, Montreuil, J and & Jolles, P (1975) The sugar part of κ-caseins from cow milk and colostrum and its microheterogeneity. Biochimie 57, 161165.CrossRefGoogle ScholarPubMed
Glasgow, LR and & Hill, RL (1980) Interaction of Mycoplasma gallisepticum with sialyl glycoproteins. Infection and Immunity 30, 353361.CrossRefGoogle ScholarPubMed
Guilloteau, P, Chayvialle, JA, Mendy, F, Roger, L, Toullec, R, Bernard, C, Mouats, A and & Faverdin, P (1987) Effect of caseinomacropeptide (CMP) on gastric secretion and plasma levels of digestive hormones in preruminant calves. Reproduction Nutrition Development 27, 287288.CrossRefGoogle Scholar
Guilloteau, P, Le Huerou-Luron, I, Chayviaille, JA, Toullec, R, Legeas, M, Bernard, C, Roger, L and & Mendy, F (1994) Effect of caseinomacropeptide (CMP) on gastric secretion and plasma gut regulatory peptides in preruminant calves. Reproduction Nutrition Development 34, 612613.CrossRefGoogle Scholar
Gyorgy, P, Jeanloz, RW, Hubertus, von, Nicolai, and & Zilliken, F (1974) Undialyzable growth factors for Lactobacillus bifidus var pennsylvanicus. European Journal of Biochemistry 43, 2933.CrossRefGoogle ScholarPubMed
Gyorgy, P, Kuhn, R, Rose, CS and & Zilliken, F (1954) Bifidus factor. II. Its occurence in milk from different species and in other natural products. Archives of Biochemistry and Biophysics 48, 202208.CrossRefGoogle Scholar
Gyorgy, P, Norris, RF and & Rose, CS (1954) Bifidus factor. I. A variant of Lactobacillus bifidus requiring a special growth factor. Archives of Biochemistry and Biophysics 48, 193201.CrossRefGoogle Scholar
Hollar, CM, Law, AJR, Dalgleish, DG and & Brown, RJ (1991) Separation of major casein fractions using cation-exchange fast protein liquid chromatography. Journal of Dairy Science 74, 24032409.CrossRefGoogle Scholar
Holmgren, J (1981) Actions of cholera toxin and the prevention and treatment of cholera. Nature 292, 413416.CrossRefGoogle ScholarPubMed
Idota, T, Kawakami, H and & Nakajima, I (1994) Growth-promoting effects of N-actylneuraminic acid-containing substances on Bifidobacteria. Bioscience, Biotechnology and Biochemistry 58, 17201722.CrossRefGoogle Scholar
Idota, T (1996) Sialylated compounds in human milk and their physiological significance in infants. Snow Brand R&D Reports 106, 155.Google Scholar
Isoda, H, Kawasaki, Y, Tanimoto, M, Dosako, S & & Idota, T (1999) Use of compounds containing or binding sialic acid to neutralize bacterial toxins. European Patent 385112.Google Scholar
Jolles, J, Schoentgen, F, Alais, C, Fiat, A-M and & Jolles, P (1972) Studies on the primary structure of cow κ-casein - Structural features of para-κ-casein; N-termianl sequence of κ-caseinoglycopeptide studied with a sequencer. Helvetica Chimica Acta 55, 28722883.CrossRefGoogle Scholar
Jolles, J, Fiat, A-M, Alais, C and & Jolles, P (1973) Comparative study of cow and sheep κ-caseinoglycopeptides: determination of the N-terminal sequences with a sequencer and location of the sugars. FEBS Letters 30, 173176.CrossRefGoogle ScholarPubMed
Kanamori, M, Kawaguchi, N, Ibuki, F and & Doi, H (1980) Attachment sites of carbohydrate moieties to peptide chain of bovine κ-casein from normal milk. Agricultural and Biological Chemistry 44, 18441861.Google Scholar
Kawasaki, Y & & Dosako, S (1994) Process of producing κ-casein glycomacropeptides. United States Patent 5278288.Google Scholar
Kawasaki, Y, Dosako, S, Shimatani, M & & Idota, T (1994) Process for producing κ-casein glycomacropeptides. United States Patent 5280107.Google Scholar
Kawasaki, Y, Isoda, K, Shinmoto, H, Tanimoto, M, Dosako, S, Idota, T and & Nakajima, I (1993) Inhibition by κ-casein glycomacropeptide and lactoferrin of influenza virus hemaglutination. Bioscience, Biotechnology and Biochemistry 57, 12141215.CrossRefGoogle Scholar
Kawasaki, Y, Isoda, H, Tanimoto, M, Dosako, S, Idota, T and & Ahiko, K (1992) Inhibition by lactoferrin and κ-casein glycomacropeptide of binding of cholera toxin to its receptor. Bioscience, Biotechnology and Biochemistry 56, 195198.CrossRefGoogle ScholarPubMed
Kawasaki, Y, Kawakiami, H, Tanimoto, M, Dosako, S, Tomizawa, A, Kotake, M and & Nakajima, I (1993) pH-dependent molecular weight changes of κ-casein glycomacropeptide and its preparation by ultrafiltration. Milchwissenschaft 48, 191196.Google Scholar
Kawasaki, I, Ykio, K, Sunichi, D & & Otani, H (1995) Neutralizing agent for an endotoxin comprising a fraction containing κ-casein glycomacropeptide (GMP) as an active ingredient. Japanese Patent 7278013.Google Scholar
Kehagias, C, Jao, YC, Micolajcik, EM and & Hansen, PMT (1977) Growth response of Bifidobacterium bifidum to a hydrolytic product isolated from bovine casein. Journal of Food Science 42, 146150.CrossRefGoogle Scholar
LaBell, F (1998) Health-enhancing whey proteins. Prepared Foods 167, 143.Google Scholar
Leeden, R (1966) The chemistry of gangliosides: a review. Journal of the American Oil Chemists Society 43, 5766.CrossRefGoogle Scholar
Liukkonen, J, Haataja, S, Tikkanen, K, Kelm, S and & Finne, J (1992) Identification of N-acetylneuraminyl α2–3 poly-N-acteyl lactosamine glycans as the receptors of sialic acid-binding Streptococcus suis strains. Journal of Biological Chemistry 267, 2110521111.CrossRefGoogle Scholar
Loomes, LM, Uemura, K, Childs, RA, Paulson, JC, Rogers, GN, Scudder, PR, Michalski, JC, Housell, EF, Taylor-Robinson, D and & Feizi, T (1984) Erythrocyte receptors for Mycoplasma pneumoniae are silaylated oligosaccharides of Ii antigen type. Nature 306, 560563.CrossRefGoogle Scholar
McKenzie, HA and & Wake, RG (1961) An improved method for the isolation of κ-casein. Biochimica et Biophysica Acta 47, 240242.CrossRefGoogle Scholar
Marshall, SC (1991) Casein macropeptide from whey – a new product opportunity. Food Research Quarterly 51, 8691.Google Scholar
Minkiewicz, P, Slangen, CJ, Lagerwerf, FM, Haverkamp, J, Rollema, HS and & Visser, S (1996) Reversed phase high-performance liquid chromatographic separation of bovine kappa-casein macropeptide and characterization of isolated fractions. Journal of Chromatography 743, 123135.CrossRefGoogle Scholar
Monnai, M and & Otani, H (1997) Effect of bovine κ-caseinoglycopeptide on secretion of interleukin-1 family cytokines by P388D1 cells, a line derived from mouse monocyte/macrophage. Milchwissenschaft 52, 192196.Google Scholar
Morr, CV and & Seo, A (1988) Fractionation and characterization of glycomacropeptide from caseinate and skim milk hydrolyzates. Journal of Food Science 53, 8087.CrossRefGoogle Scholar
Nakano, T and & Ozimek, L (1998) Gel chromatography of glycomacropeptide (GMP) from sweet whey on Sephacryl S-200 at different pHs and on Sephadex G-75 in 6M guanidine hydrochloride. Milchwissenschaft 53, 629633.Google Scholar
Neeser, JR (1991 a) Anti-plaque and anticaries agent. United States Patent 4994441.Google Scholar
Neeser, JR (1991 b) Anti-plaque and anticaries agent. United States Patent 4992420.Google Scholar
Neeser, JR, Chambaz, A, Hoang, KY and, Link-Amster, H (1988) Screening for complex carbohydrates inhibiting hemaggluatinations by CFA/I- and CFA/II-expressing enterotoxigenic Escherichia coli strains. FEMS Microbiology Letters 49, 301307.CrossRefGoogle Scholar
Neeser, JR, Chambaz, A, Vedovo, SD, Prigent, MJ and & Guggenheim, B (1988) Specific and nonspecific inhibition of adhesion of oral actinomyces and streptococci to erythrocytes and polystrene by caseinoglycopeptide derivatives. Infection and Immunity 56, 32013208.CrossRefGoogle Scholar
Neeser, JR, Grafstrom, RC, Woltz, A, Brassart, D, Fryder, V and & Guggenheim, B (1995) A 23 kda membrane glycoprotein bearing NeuNac2–3Gal β1–3GalNAc O-linked carbohydrate chains acts as a receptor for Streptococcus sanguis OMZ 9 on human buccal epithelial cells. Glycobiology 5, 97104.CrossRefGoogle Scholar
Neeser, JR, Golliard, M, Woltz, A, Rouvet, M, Dillmann, ML and & Guggenheim, B (1994) In vitro modulation of oral bacterial adhesion to saliva-coated hydroxyapatite beads by milk casein derivatives. Oral Microbiology and Immunology 9, 193201.CrossRefGoogle ScholarPubMed
Nielsen, P & & Tromholt, N (1994) Method for production of a kappa-casein glycomacropeptide and use of a kappa-casein glycomacropeptide. World Patent 9415952.Google Scholar
Ofek, I and & Sharon, N (1990) Adhesins as lectins: specificity and role in infection. Current Topics in Microbiology and Immunology 151, 91113.Google ScholarPubMed
Otani, H and & Hata, I (1995) Inhibition of proliferative responses of mouse spleen lymphocytes and rabbit Peyer's patch cells by bovine milk caseins and their digests. Journal of Dairy Research 62, 339348.CrossRefGoogle ScholarPubMed
Otani, H, Horimoto, Y and & Monnai, M (1996) Suppression of interleukin-2 receptor expression on mouse Cells by bovine κ-caseinoglycopeptide. Bioscience, Biotechnology and Biochemistry 60, 10171019.CrossRefGoogle ScholarPubMed
Otani, H and & Monnai, M (1993) Inhibition of proliferative responses of mouse spleen lymphocytes by bovine milk κ-casein digests. Food and Agricicultural Immunology 5, 219229.CrossRefGoogle Scholar
Otani, H and & Monnai, M (1995) Induction of an interleuken-1 receptor antagonist-like component produced from mouse speen cells by bovine κ-caseinoglycopeptide. Bioscience, Biotechnology and Biochemistry 59, 11661168.CrossRefGoogle Scholar
Otani, H, Monnai, M and & Hosono, A (1992) Bovine κ-casein as inhibitor of the proliferation of mouse splenocytes induced by lipopolysaccharide stimulation. Milchwissenschaft 47, 512515.Google Scholar
Otani, H, Monnai, M, Kawasaki, Y, Kawakami, H and & Tanimoto, M (1995) Inhibition of mitogen-induced proliferative responses of lymphocytes by bovine κ-caseinoglycopeptides having different carbohydrate chains. Journal of Dairy Research 62, 349357.CrossRefGoogle ScholarPubMed
Parkkinen, A, Rogers, GN, Korhonen, T, Dahr, W and & Finne, J (1986) Identification of the O-linked sialyloligosaccharides of glycophorin A as the erythrocyte receptors for S-fimbriated Escherichia coli. Infection and Immunity 54, 3742.CrossRefGoogle ScholarPubMed
Petschow, BW and & Talbott, RD (1991) Response of Bifidobacterium species to growth promoters in human and cow milk. Pediatric Research 29, 208213.CrossRefGoogle ScholarPubMed
Poch, M and & Bezkorovainy, A (1988) Growth-enhancing supplements for various species of the genus Bifidobacterium. Journal of Dairy Science 71, 32144221.CrossRefGoogle ScholarPubMed
Poch, M and & Bezkorovainy, A (1991) Bovine milk κ-casein trypsin digest is a growth enhancer for the genus Bifidobacterium. Journal of Agricultural and Food Chemistry 39, 7377.CrossRefGoogle Scholar
Proulx, M, Gauthier, SF and & Roy, D (1992) Effect of casein hydrolysates on the growth of Bifidobacteria. Le Lait 72, 393404.CrossRefGoogle Scholar
Saito, T and & Itoh, T (1992) Variations and distributions of O-glycosidically linked sugar chains in bovine κ-casein. Journal of Dairy Science 75, 17681774.CrossRefGoogle ScholarPubMed
Saito, T, Itoh, T and & Adachi, S (1981) The chemical structure of a tetrasaccaride containing N-acetylglucosamine obtained from bovine colostrum κ-casein. Biochimica et Biophysica Acta 673, 487494.CrossRefGoogle ScholarPubMed
Saito, T, Yamaji, A and & Itoh, T (1991) A new isolation method of caseinoglycopeptide from sweet cheese whey. Journal of Dairy Science 74, 28312837.CrossRefGoogle Scholar
Schengrund, C-L and & Ringler, NJ (1989) Binding of Vibrio cholera toxin and the heat-labile enterotoxin of Escherichia coli to GM1, derivatives of GM1, and nonlipid oligosaccharide polyvalent ligands. Journal of Biological Chemistry 264, 1323313237.CrossRefGoogle ScholarPubMed
Schupbach, P, Neeser, JR, Golliard, M, Rouvet, M and & Guggenheim, B (1996) Incorporation of caseinoglycomacropeptide and caseinophosphopeptide into the salivary pellicle inhibits adherence of mutans streptococci. Journal of Dental Research 75, 17791788.CrossRefGoogle ScholarPubMed
Shammet, KM, McMahon, DJ and & Brown, RJ (1992) Characteristics of macropeptide fractions isolated from whole casein and purified κ-casein. Milchwissenschaft 47, 615619.Google Scholar
Sharma, SK, Hill, AR and & Mittal, GS (1993) An improved method to measure glycomacropeptides (GMP) in renneted milk. Milchwissenschaft 48, 7173.Google Scholar
Shimatini, M, Uchida, Y, Matsuno, I, Oyoshi, M & & Ishiyama, Y (1993) Process for manufacturing sialic acids-containing composition. United States Patent 5270462.Google Scholar
Simon, PM (1996) Pharmaceutical oligosaccharides. Drug Discovery Today 1, 522528.CrossRefGoogle Scholar
Skudder, PJ (1985) Evaluation of a porous silica-based ion-exchange medium for the production of protien fractions from rennet- and acid-whey. Journal of Dairy Research 52, 167181.CrossRefGoogle Scholar
Snow, Brand, Milk, Products Co (1996) Human normal B lymphocyte accelerating agent. Japanese Patent, 96018997.Google Scholar
Snow, Brand, Milk, Products Co (1999) Stabilizer for food manufacturing. Japanese Patent, 11103794.Google Scholar
Stan, EYa and & Chernikov, MP (1979) On the physiological activity of κ-casein glycomacropeptide. Voprosy Meditsinskoi Khimii 25, 348352.Google ScholarPubMed
Stan, EYa and & Chernikov, MP (1982) Formation of a peptide inhibitor of gastric secretion from rat milk proteins in vivo. Byulleten' Eksperimental'noi Biologii I Metisiney 94, 6466.Google Scholar
Stan, EYa, Groisman, SD, Krasil'shchikov, KB and & Chernikov, MP (1983) Effects of κ-casein glycomacropeptide motility in dogs. Byulleten' Eksperimental'noi Biologii I Metisiney 96, 1012.Google ScholarPubMed
Steijns, J (1996) Dietary proteins as the source of new health promoting bio-active peptides with special attention to glutamine peptide. Food Tech Europe 3, 8084.Google Scholar
Sugii, S and & Tsuji, T (1989) Binding and hemagglutinating properties of the B Subunit(s) of heat-labile enterotoxin isolated from human enterotoxigenic Escherichia coli. FEMS Microbiological Letters 66, 4550.CrossRefGoogle Scholar
Tanimoto, M, Kawasaki, Y, Shinmoto, H, Dosako, S & & Tomizawa, A (1991) Process for producing κ-casein glycomacropeptide. United States Patent 5075424.Google Scholar
Tran, VD and & Baker, BE (1970) Casein. IX. Carbohydrate moeity of κ-casein. Journal of Dairy Science 53, 10091012.CrossRefGoogle Scholar
van Halbeek, H, Dorland, L, Vliefenthart, JFG, Fiat, A-M and & Jolles, P (1980) A 360-MHz 1H-NMR study of three oligosaccharides isolated from cow κ-casein. Biochimica et Biophysica Acta 623, 295300.CrossRefGoogle ScholarPubMed
van Heyningen, S (1974) Cholera toxin: interaction of subunits with ganglioside GM1. Science 183, 656657.CrossRefGoogle Scholar
van Hooydonk, ACM and & Olieman, C (1982) A rapid and sensitive high-performance liquid chromatography method of following the action of chymosin in milk. Netherlands Milk and Dairy Journal 36, 153158.Google Scholar
van Hooydonk, ACM, Olieman, C and & Hagedoorn, HG (1984) Kinetics of the chymosin-catalyzed proteolysis of κ-casein in milk. Netherlands Milk and Dairy Journal 37, 207222.Google Scholar
Vasilevskaya, LS, Stan, EYa, Chernikov, MP and & Shlygin, GK (1977) Inhibitory action of glycomacropeptide produced on the gastric secretion by various humoral stimulants Voprosy Pitaniya 2124.Google Scholar
Whitney, RM, NP, Wong, R, Jenness, M, Keeney and & EH, Marth (1988) Proteins in milk Fundamentals of Dairy Chemistry 8992.CrossRefGoogle Scholar
Worobo, R, Kim, BC, Kim, S and & Rheem, S (1998) Detection of cholera-toxin-binding activity of glycomacropeptide from bovine κ-casein and optimization of its production by use of response surface methodology. Journal of Dairy Science, Supplement 1 81, 18.Google Scholar
Yaguchi, M, Davies, DT and & Kim, YK (1968) Preparation of κ-casein by gel filtration. Journal of Dairy Science 51, 473477.CrossRefGoogle Scholar
Yakabe, T, Kawakami, H & & Idota, T (1994) Growth simulation agent for bifidus and lactobacillus. Japanese Patent 7267866.Google Scholar
Yun, SS, Sugita-Konishi, Y, Kumagai, S and & Yamauchi, K (1996) Glycomacropeptide from cheese whey protein concentrate enhances IgA production by lipopolysaccharide-stimulated spleen cells. Animal Science and Technology (Japan) 67, 458462.Google Scholar
Yvon, M, Beucher, S, Guilloteau, P, Huerou-Luron, IL and & Corring, T (1994) Effects of caseinomacropeptide (CMP) on digestion regulation. Reproduction Nutrition Development 34, 527537.CrossRefGoogle ScholarPubMed
Zhang, YP & & Shapiro, P (1998) Fluoride free dental remineralization. World Patent 9852524.Google Scholar
Zittle, CA and & Custer, JH (1963) Purification and some of the properties of αS-casein and κ-casein. Journal of Dairy Science 46, 11831188.CrossRefGoogle Scholar