Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T01:21:56.307Z Has data issue: false hasContentIssue false

Biochemical and pathological changes in tissues of Friesian cattle during the experimental induction of copper deficiency

Published online by Cambridge University Press:  25 March 2008

C. F. Mills
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
A. C. Dalgarno
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
G. Wenham
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Copper deficiency was induced in five Friesian cattle offered a semi-synthetic diet containing < 1 mg Cu/kg. Changes in blood and liver Cu contents and in the Cu-containing enzymes, ferroxidase I (caeruloplasmin; EC 1.16.3.1) and monoamine oxidase (EC 1.4.3.4) of plasma and cytochrome oxidase (EC 1.9.3.1) of liver and skeletal muscle were monitored during Cu depletion.

2. Rapid decreases in blood and liver Cu and plasma ferroxidase I activity were found at least 80 d before the first appearance of overt clinical signs of deficiency. Plasma monoamine oxidase and liver cytochrome oxidase activities decreased less rapidly and thus may provide useful indices of chronic Cu depletion.

3. Although results of these assays indicated that Cu depletion was occurring and metabolic defects supervening, none facilitated the early recognition of individuals that subsequently showed marked overt clinical signs of Cu deficiency compared with those less severely affected.

4. Irrespective of their clinical appearance at slaughter, Cu-depleted cattle showed gross or microscopic lesions of the skeleton and cardiovascular system and, in some instances, lesions of the ligamentum nuchae and small intestine. The aetiology of these lesions is considered with particular respect to changes in the activities of the Cu-dependent enzymes studied and to the interpretation of field surveys based solely upon determination of blood or liver Cu content.

5. A second group of five cattle was offered the same diet supplemented with Cu to provide 8 mg Cu/kg and, later, 15 mg Cu/kg. Although no pathological lesions attributable to Cu deficiency were detected at slaughter a marked reduction in liver Cu content, a decrease in plasma ferroxidase I activity and, in four animals, the development of a diarrhoea controlled by oral administration of Cu, suggested that 8 mg Cu/kg diet did not meet their requirement for Cu.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1976

References

Abdellatif, A. M. M. (1968). Conditioned Hypocuprosis: Some Effects of Diet on Copper Storage in Ruminants. Wageningen: Centre for Agricultural Publishing and Documentation.Google Scholar
Agricultural Research Council (1964). Nutrient Requirements of Farm Livestock No. 2, Ruminants. London: Agricultural Research Council.Google Scholar
Allcroft, R. & Parker, W. H. (1949). Br. J. Nutr. 3, 305.CrossRefGoogle Scholar
Ammerman, C. B. (1970). J. Dairy Sci. 53, 1097.CrossRefGoogle Scholar
Barnett, E. & Nordin, B. E. C. (1960). Clin. Radiol. 11, 166.CrossRefGoogle Scholar
Baxter, J. H., van Wyk, J. J. & Follis, R. H. (1953). Bull. Johns Hopkins Hosp. 93, 25.Google Scholar
Bennetts, H. W., Beck, A. B. & Hartley, R. (1948). Aust. vet. J. 24, 237.CrossRefGoogle Scholar
Bingley, J. B. & Anderson, N. (1972). Aust.J. agric. Res. 23, 885.CrossRefGoogle Scholar
British Pharmacopoeia (1973).Google Scholar
Carnes, W. H. (1971). Fedn Proc. Fedn Am. Socs exp. Biol. 30, 995.Google Scholar
Chou, W. S., Savage, J. E. & O'Dell, B. L. (1968). Proc. Soc. exp. Biol. Med. 128, 948.CrossRefGoogle Scholar
Committee on Mineral Nutrition (1973). Tracing and Treating Mineral Disorders in Dairy Cattle. Wageningen: Centre for Agricultural Publishing and Documentation.Google Scholar
Cunningham, I. J. (1946). N.Z.Jl Sci. Technol. A 27, 381.Google Scholar
Danks, D. M., Cartwright, E., Stevens, B. J. & Towdey, R. R. W. (1973). Science, N.Y. 179, 1140.CrossRefGoogle Scholar
Davies, D. G. & Baker, M. H. (1974). Vet. Rec. 94, 561.CrossRefGoogle Scholar
Dearsden, J. C. & Forbes, W. F. (1958). Can. J. Chem. 36, 1362.CrossRefGoogle Scholar
Fell, B. F., Dinsdale, D. & Mills, C. F. (1975). Res. vet. Sci. 18, 274.CrossRefGoogle Scholar
Field, H. I. (1957). Vet. Rec. 69, 788.Google Scholar
Follis, R. H., Bush, J. A., Cartwright, G. E. & Wintrobe, Nl. M. (1955). Bull. Johns Hopkins Hosp. 97, 405.Google Scholar
Frieden, E. (1971). In Bioinorganic Chemistry, Advanced Chemistry Series, p. 292 [Gould, R. F., editor]. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
Graham, G. C. & Cordano, A. (1969). Johns Hopkins med. J. 124, 139.Google Scholar
Hill, R., Thambya, R., Wan, S. P. & Shanta, C. S. (1962). J. agric. Sci., Camb. 59, 409.CrossRefGoogle Scholar
Houchin, O. B. (1958). Clin. Chem. 74, 519.CrossRefGoogle Scholar
Hunt, D. M. (1974). Nature, Lond. 249, 852.CrossRefGoogle Scholar
International Union of Biochemistry (1965). Enzyme Nomenclature, p. 7. Amsterdam: Elsevier.Google Scholar
Jamieson, S. & Allcroft, R. (1949). Scott. Agric. 29, 86.Google Scholar
Jamieson, S. & Allcroft, R. (1950). Br. J. Nutr. 4, 16.CrossRefGoogle Scholar
Leigh, L. (1975). Res. vet. Sci. 18, 282.CrossRefGoogle Scholar
Mills, C. F. & Dalgarno, A. C. (1970). In Trace Element Metabolism in Animals, p. 456 [Mills, C. F.editor]. Edinburgh: E. & S. Livingstone.Google Scholar
Osaki, S., Johnson, D. A. & Frieden, E. (1971). J. biol. Chem. 246, 3018.CrossRefGoogle Scholar
Poole, D. B. R. (1963). Copper deficiency in cattle. MSc Thesis, University of Dublin.Google Scholar
Poole, D. B. R. (1973). Studies on induced copper deficiency in cattle. PhD Thesis, University of Dublin.Google Scholar
Poole, D. B. R. & Walshe, M. J. (1970). In Trace Element Metabolism in Animals, p. 461 [Mills, C. F. editor]. Edinburgh: E. & S. Livingstone.Google Scholar
Rice, E. W. (1962). Analyt. Biochem. 3, 452.CrossRefGoogle Scholar
Rucker, R. B., Parker, H. E. & Rogler, J. C. (1969). J. Nutr. 98, 57.CrossRefGoogle Scholar
Smith, B. & Coup, M. R. (1973). N.Z. vet. J. 21, 252.CrossRefGoogle Scholar
Suttle, N. F. (1975). Proc. Nutr. Soc. 34, 76A.Google Scholar
Suttle, N. F., Angus, K. W., Nisbet, D. I. & Field, A. C. (1972). J. comp. Path. Ther. 82, 93.CrossRefGoogle Scholar
Tabor, C. W., Tabor, H. & Rosenthal, S. M. (1954). J. biol. Chem. 208, 645.CrossRefGoogle Scholar
Todd, J. R. (1971). Mineral Studies with Isotopes in Domestic Animals, p. 159. Vienna: International Atomic Energy Agency.Google Scholar
Todd, J. R., Milne, A. A. & How, P. F. (1967). Vet. Rec. 81, 653.CrossRefGoogle Scholar
Underwood, E. J. (1971). Trace Elements in Human and Animal Nutrition, 3rd ed.New York: Academic Press.Google Scholar
van der Grift, J. (1955). The copper content of the liver and blood serum of Friesian cattle. PhD Thesis, University of Utrecht.Google Scholar
Waisman, J., Cancilla, P. A. & Coulson, W. F. (1969). Lab. Invest. 21, 548.Google Scholar
Whanger, P. D. (1972). Wld Rev. Nutr. Diet. 15, 225.CrossRefGoogle Scholar
Whiting, A. H., Sykes, B. C. & Partridge, S. M. (1974). Biochem.J. 141, 573.CrossRefGoogle Scholar