Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T02:45:01.442Z Has data issue: false hasContentIssue false

Assessment of zinc bioavailability: studies in rats on zinc absorption from wheat using radio- and stable isotopes

Published online by Cambridge University Press:  09 March 2007

Thomas E. Fox
Affiliation:
AFRC Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney, NorwichNR4 7UA
Susan J. Fairweather-Tait
Affiliation:
AFRC Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney, NorwichNR4 7UA
John Eagles
Affiliation:
AFRC Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney, NorwichNR4 7UA
S. Gabrielle Wharf
Affiliation:
AFRC Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney, NorwichNR4 7UA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Absorption from wheat intrinsically and extrinsically labelled with 67Zn and extrinsically labelled with 65Zn was measured from 67Zn faecal excretion and 6sZn whole-body retention in rats. There were significant differences between the extrinsically- and intrinsically-labelled 67Zn (P < 0·001), but not between the extrinsically-labelled 65Zn and intrinsically-labelled 67Zn. The effect of chicken meat on the absorption of Zn from intrinsically-labelled wheat was also studied in the rat. Mean Zn absorption from wheat and chicken meat fed separately was 18·5 and 68·2% respectively, and from a mixture of the two containing the same level of Zn was 50·1%. The apparent absorption of Zn from the composite meal was significantly higher than predicted from the results of the foods on their own (P < 0·001).

Type
Zinc bioavailability
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

Colin, M. A., Taper, L. J. & Ritchley, S. J. (1983). Effect of dietary zinc and protein levels in the utilization of zinc and copper by adult females. Journal of Nutrition 113, 14801488.CrossRefGoogle ScholarPubMed
Eagles, J., Fairweather-Tait, S. J., Portwood, D. E., Self, R., Golz, A. & Heumann, K. G. (1989). Comparison of fast atom bombardment mass spectrometry and thermal ionization quadrupole mass spectrometry for the measurement of zinc absorption in human nutrition studies. Analytica1 Chemistry 61, 10231025.CrossRefGoogle ScholarPubMed
Egan, C. B., Smith, F. G., Houk, R. S. & Serfass, R. (1991). Zinc absorption in women: comparison of intrinsic and extrinsic stable isotope labels. American Journal of Clinical Nutrition 53, 547553.CrossRefGoogle ScholarPubMed
Evans, G. W. & Johnson, P. E. (1977). Determination of zinc availability in foods by the extrinsic label technique. American Journal of Clinical Nutrition 30, 873878.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J., Fox, T. E., Wharf, S. G., Eagles, J., Crews, H. M. & Massey, M. (1991). Apparent zinc absorption by rats from foods labelled intrinsically and extrinsically with 64Zn. Brirish Journal of Nutrition 66, 6571.CrossRefGoogle Scholar
Fairweather-Tait, S. J., Portwood, D. E., Symss, L., Eagles, J. & Minski, M. J. (1989). Iron and zinc absorption in human subjects from a mixed meal of extruded and non extruded wheat bran and flour. American Journal of Clinical Nutrition 49, 151155.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J. & Southon, S. (1989). Studies of iron:zinc interactions in adult rats and the effect of iron fortification of two commercial infant weaning products on iron and zinc status of weanling rats. Journal of Nutrition 119, 599606.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J. & Wright, A. J. A. (1984). The influence of previous iron intake on the estimation of bioavailability of Fe from a test meal given to rats. British Journal of Nutrition 51, 199208.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S.J., Wright, A.J.A., Cooke, J. & Franklin, J. (1985). Studies of zinc metabolism in pregnant and lactating rats. British Journal of Nutrition 54, 401413.CrossRefGoogle ScholarPubMed
Flanagan, P. R., Cluett, J., Chamberlain, M. J. & Valberg, L. S. (1985). Dual-isotope method for determination of human zinc absorption: the use of a test meal of turkey meat. Journal of Nutrition 115, 111122.CrossRefGoogle ScholarPubMed
Fox, T. E., Fairweather-Tait, S. J., Eagles, J. & Wharf, S. G. (1991). Intrinsic labelling of different foods with stable isotope of zinc (67Zn) for use in bioavailability studies. British Journal of Nutrition 66, 5763.CrossRefGoogle ScholarPubMed
Gallagher, D. D., Johnson, P. E., Hunt, S. R., Lykken, G. I. & Marchello, M. J. (1988). Bioavailability in humans of zinc from beef: intrinsic versus extrinsic labels. American Journal of Clinical Nutrition 48, 350354.CrossRefGoogle Scholar
Greger, J. L. & Mulvaney, J. (1985). Absorption and tissue distribution of zinc, iron and copper by rats fed diets containing lactalalbumin, soy and supplemental sulphur containing amino acids. Journal of Nutririon 115, 200210.CrossRefGoogle Scholar
Janghorbani, M., Istfan, N. W., O'Pagounes, J., Steinke, F. H. & Young, V. R. (1982). Absorption of dietary zinc in man: Comparison of intrinsic and extrinsic labels using triple stable isotope method. American Journal of Clinical Nutrition 36, 537545.CrossRefGoogle ScholarPubMed
Ketelson, S. M., Stuart, M. A., Weaver, C. M., Forbes, R. M. & Erdman, J. W. (1984). Bioavailability of zinc to rats from defatted soy flour, acid precipitated soy concentrate and neutralised soy concentrate as determined by intrinsic and extrinsic labelling techniques. Journal of Nutrition 114, 536542.CrossRefGoogle Scholar
Meyer, N. R., Stuart, M. A. & Weaver, C. M. (1983). Bioavailability of zinc from defatted flour, soy hulls and whole eggs as determined by intrinsic and extrinsic labelling techniques. Journal of Nutrition 113, 12551264.CrossRefGoogle Scholar
Sandstrom, B., Almgren, A., Kivisto, B. & Cederblad, A. (1989). Effect of protein level and protein source on zinc absorption in humans. Journal of Nutrition 119, 4853.CrossRefGoogle ScholarPubMed
Sandstrom, B., Arvidsson, B., Cederblad, A. & Bjorn-Rasmussen, E. (1980). The significance of wheat extraction rate, zinc, calcium, and protein content in meals based on bread. American Journal of Clinical Nutrition 33, 739745.CrossRefGoogle ScholarPubMed
Sandstrom, B. & Cederblad, A. (1980). Zinc absorption from composite meals 11. Influence of the main protein source. American Journal of Clinical Nutrition 33, 17781783.CrossRefGoogle Scholar
Scott, M. L. & Ziegler, T. R. (1963). Evidence for natural chelates which aid in the utilization of zinc by chicks. Journal of Agricultural and Food Chemistry 11, 123125.CrossRefGoogle Scholar
Serfass, R. E., Ziegler, E. E., Edwards, B. B. & Houk, R. S. (1989). Intrinsic and extrinsic stable isotopic Zn absorption by infants from formulas. Journal of Nutrition 119, 16611669.CrossRefGoogle Scholar
Shah, B. G. & Belonje, B. (1981). Bioavailability of zinc in beef with and without plant protein. Federation Proceedings, no. 3552, Vol. 40. Ottawa: Food Directorate, Health and Welfare.Google Scholar
Snedeker, S. M. & Greger, J. L. (1981). Effects of dietary protein, sulphur amino acids and phosphorus on human trace element metabolism. Nutrition Reports International 23, 853864.Google Scholar
Snedeker, S. M. & Greger, J. L. (1983). Metabolism of zinc, copper and iron as affected by dietary protein, cysteine and histidine. Journal of Nutrition 113, 644652.CrossRefGoogle ScholarPubMed
Solomons, N. W. (1982). Biological availability of zinc in humans. American Journal of Clinical Nutrition 35, 10481075.CrossRefGoogle ScholarPubMed
Turnland, J. R., Durkin, N., Costa, F. & Margen, S. (1986). Stable isotope studies of zinc absorption and retention in young and elderly men. Journal of Nutrition 116, 12391247.CrossRefGoogle Scholar
Wada, L., Turnland, J. R. & King, J. C. (1985). Zinc utilization in young men fed adequate and low zinc intakes. Journal of Nutrition 115, 13451354.CrossRefGoogle ScholarPubMed