Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T21:28:17.271Z Has data issue: false hasContentIssue false

Apparent zinc absorption by rats from foods labelled intrinsically and extrinsically with 67Zn

Published online by Cambridge University Press:  09 March 2007

Susan J. Fairweather-Tait
Affiliation:
AFRC Institute of Food Research, Colney Lane, Norwich NR4 7UA
Thomas E. Fox
Affiliation:
AFRC Institute of Food Research, Colney Lane, Norwich NR4 7UA
S. Gabrielle Wharf
Affiliation:
AFRC Institute of Food Research, Colney Lane, Norwich NR4 7UA
John Eagles
Affiliation:
AFRC Institute of Food Research, Colney Lane, Norwich NR4 7UA
Helen M. Crews
Affiliation:
MAFF Food Safety Directorate, Food Science Laboratory, Colney Lane, Norwich NR4 7UQ
Robert Massey
Affiliation:
MAFF Food Safety Directorate, Food Science Laboratory, Colney Lane, Norwich NR4 7UQ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A variety of foods (peas (Pisum sativum), chicken meat, eggs, goat's milk, human milk) enriched with the stable isotope 67Zn were prepared by means of intrinsic- and extrinsic-labelling procedures. They were fed to rats and apparent absorption of 67Zn determined from faecal excretion measurements using thermal ionization mass spectrometry. There were significant differences in the absorption of the extrinsic and intrinsic label which differed in magnitude between the foods tested. The extrinsic 67Zn was less well absorbed in peas, chicken meat, eggs, and human milk than intrinsic 67Zn, but in goat's milk the extrinsic 67Zn was better absorbed than the intrinsic label. These results demonstrate that extrinsically-added stable Zn isotopes do not fully exchange with endogenous Zn in many foods, and illustrate the need for caution when using extrinsic labels for Zn bioavailability studies.

Type
Bioavailability and Utilization of Inorganic Nutrients
Copyright
Copyright © The Nutrition Society 1991

References

REFERENCES

Bothwell, T. H., Charlton, R. W., Cook, J. D. & Finch, C. A. (1979). Iron Metabolism in Man, pp. 256260. Oxford: Blackwell.Google Scholar
Eagles, J., Fairweather-Tait, S. J., Portwood, D. E., Self, R., Gotz, A. & Heumann, K. G. (1989). Comparison of fast atom bombardment mass spectrometry and thermal ionization quadrupole mass spectrometry for the measurement of zinc absorption in human nutrition studies. Analytical Chemistry 61, 10231025.CrossRefGoogle ScholarPubMed
Evans, F. W. & Johnson, P. E. (1977). Determination of zinc availability in foods by the extrinsic label technique. American Journal of Clinical Nutrition 30, 873878.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J., Portwood, D. E., Symss, L., Eagles, J. & Minski, M. J. (1989). Iron and zinc absorption in human subjects from a mixed meal of extruded and non-extruded wheat bran and flour. American Journal of Clinical Nutrition 49, 151155.CrossRefGoogle Scholar
Fairweather-Tait, S. J. & Southon, S. (1989). Studies of iron:zinc interactions in adult rats and the effect of iron fortification of two commercial infant weaning products on iron and zinc status of weanling rats. Journal of Nutrition 119, 599606.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J., Wright, A. J. A., Cooke, J. & Franklin, J. (1985). Studies of zinc metabolism in pregnant and lactating rats. British Journal of Nutrition 54, 401413.CrossRefGoogle ScholarPubMed
Flanagan, P. R., Cluett, J., Chamberlain, M. J. & Valberg, L. S. (1985). Dual-isotope method for determination of human zinc absorption: the use of a test meal of turkey meat. Journal of Nutrition 115, 111122.CrossRefGoogle ScholarPubMed
Fox, T. E., Fairweather-Tait, S. J., Eagles, J. & Wharf, S. G. (1991). Intrinsic labelling of different foods with stable isotope of zinc (67Zn) for use in bioavailability studies. British Journal of Nutrition 66, 5763.CrossRefGoogle ScholarPubMed
Gallaher, D. D., Johnson, P. E., Hunt, J. R., Lykken, G. I. & Marchello, M. J. (1988). Bioavailability in humans of zinc from beef: intrinsic vs extrinsic labels. American Journal of Clinical Nutrition 48, 350354.CrossRefGoogle ScholarPubMed
Janghorbani, M., Istfan, N. W., Pagounes, J. O., Steinke, F. H. & Young, V. R. (1982). Absorption of dietary zinc in man: comparison of intrinsic and extrinsic labels using a triple stable isotope method. American Journal of Clinical Nutrition 36, 537545.CrossRefGoogle ScholarPubMed
Ketelsen, S. M., Stuart, M. A., Weaver, C. M., Forbes, R. M. & Erdman, J. W. Jr. (1984). Bioavailability of zinc to rats from defatted soy flour, acid-precipitated soy concentrate as determined by intrinsic and extrinsic labelling techniques. Journal of Nutrition 114, 536542.CrossRefGoogle Scholar
Meyer, N. R., Stuart, M. A. & Weaver, C. M. (1983). Bioavailability of zinc from defatted soy flour, soy hulls and whole eggs as determined by intrinsic and extrinsic labelling techniques. Journal of Nutrition 113, 12551264.CrossRefGoogle Scholar
Payne, R. W., Lane, P. W., Ainsley, A. E., Bicknell, K. E., Digby, P. G. N., Harding, S. A., Leech, P. K., Simpson, H. R., Todd, A. D., Verrier, P. J., White, R. P., Gower, J. C., Tunnicliffe-Wilson, G. & Paterson, L. J. (1987) GENSTAT 5 Reference Manual. Oxford: Clarendon Press.Google Scholar
Sandstrom, B., Keen, C. L. & Lonnerdal, V. (1983). An experimental model for studies of zinc bioavailability from milk and infant formulas using extrinsic labelling. American Journal of Clinical Nutrition 38, 420428.CrossRefGoogle Scholar
Serfass, R. E., Ziegler, E. E., Edwards, B. B. & Houk, R. S. (1989). Intrinsic and extrinsic stable isotopic zinc absorption by infants from formulas. Journal of Nutrition 119, 16611669.CrossRefGoogle ScholarPubMed