Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T01:20:23.498Z Has data issue: false hasContentIssue false

α-Amylase (EC 3.2.1.1) susceptibility rather than viscosity or gastric emptying rate controls plasma responses to starch in healthy humans

Published online by Cambridge University Press:  09 March 2007

F. R. J. Bornet
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de technologie appliquée à la nutrition, BP 527, 44026 Nantes, Cedex 03, France
Y. Bizais
Affiliation:
The Projet DIMI Hôpital Guillaume et René Laënnec, Nantes, France
S. Bruley Des Varannes
Affiliation:
Laboratoire d'Explorations Fonctionelles Digestives, Hôpital Guillaume et René Laënnec, Nantes, France
B. Pouliquen
Affiliation:
Laboratoire d'Explorations Fonctionelles Digestives, Hôpital Guillaume et René Laënnec, Nantes, France
J. Delort Laval
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de technologie appliquée à la nutrition, BP 527, 44026 Nantes, Cedex 03, France
J. P. Galmiche
Affiliation:
Laboratoire d'Explorations Fonctionelles Digestives, Hôpital Guillaume et René Laënnec, Nantes, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The relationship between starch α-amylase (EC 3.2.1.1) susceptibility, plasma responses and gastric emptying rates has been investigated in humans. Nine randomly chosen healthy subjects were given three carbohydrate test meals (25 g starch or equivalent glucose units): two maize starch pastes with (a) 240 (S24) or (b) 500 (S50) g amylose/kg, and a glucose solution (GS). At 30 min, in vitro starch α-amylolysis was 48 (sd 4)% for S24 and 35 (sd 4)% for S50. Test meals differed in viscosity (mPas: S24, 54000; S50, 190; GS, 4). Carbohydrates were labelled with 99mTechnetium and isotope gastric emptying was measured by external gamma counting. Carbohydrate isotopic gastric emptying patterns were exponential. Half gastric emptying time (min) was significantly (P < 0.05) shorter for S50 (19 (sd 2)) than for GS (26 (sd 2)) or S24 (29 (sd 2)). No correlation was found between half gastric emptying time and plasma response values. Values for peak insulin (pmol/l) above fasting were significantly (P < 0.05) different: GS, 306 (sd 11); S24, 227 (sd 11); S50, 187 (sd 11). It is concluded that α-amylase susceptibility of the test carbohydrates is a determining factor in the insulin response of healthy subjects, while viscosity of the test meals and gastric emptying rate have no effect.

Type
Digestion, Absorption and Gut Physiology
Copyright
Copyright © The Nutrition Society 1990

References

Bornet, F. R. J., Costagliola, D., Riszkalla, S., Blayo, A., Fontvielle, A.-M., Haardt, M.-J., Letanoux, M., Tchobroutsky, G. & Slama, G. (1987). Insulinemic and glycemic indexes of six starch-rich foods taken alone and in a mixed meal by type 2 diabetics. American Journal of Clinical Nutrition 45, 588595.CrossRefGoogle Scholar
Bornet, F. R. J., Fontvielle, A.-M., Riskalla, S. W., Colonna, P., Blayo, A., Mercier, C. & Slama, G. (1989). Insulin and glycemic responses in healthy humans to native starches processed in different ways: correlation with in vitro α-amylase hydrolysis. American Journal of Clinical Nutrition 50, 315323.CrossRefGoogle ScholarPubMed
Brener, W., Hendrix, T. R. & McHugh, P. R. (1983). Regulation of gastric emptying of glucose. Gastroenterology 85, 7682.CrossRefGoogle ScholarPubMed
Chaudhuri, T. K. (1974). Use of 99m Tc-DTPA for measuring gastric emptying time. Journal of Nuclear Medicine 15, 391395.Google Scholar
Christian, P. E., Datz, F. L., Sorenson, J. A. & Taylor, A. (1983). Technical factors in gastric emptying studies. Journal of Nuclear Medicine 24, 264268.Google ScholarPubMed
Christian, P. E., Moore, J. G., Sorenson, J. A., Coleman, R. E. & Weich, D. M. (1980). Effects of meal size and correction technique on gastric emptying time: studies with two tracers and opposed detectors. Journal of Nuclear Medicine 21, 883885.Google ScholarPubMed
Crapo, P. A., Reaven, G. & Olefsky, J. (1977). Postprandial plasma glucose and insulin responses to different complex carbohydrates. Diabetes 26, 11781183.CrossRefGoogle ScholarPubMed
Doublier, J.-L. (1987). A rheological comparison of wheat, maize, faba bean and smooth pea starches. Journal of Cereal Science 5, 247262.CrossRefGoogle Scholar
Elashoff, J. D., Reedy, T. J. & Meyer, J. H. (1982). Analysis of gastric emptying data. Gastroenterology 83, 13061312.CrossRefGoogle ScholarPubMed
Erhlein, J. J. & Prove, J. (1980). Effect of viscosity of test meals on gastric emptying in dogs. Journal of Experimental Physiology 67, 410425.Google Scholar
Flourié, B., Vidon, N., Chayvialle, J. A., Franchisseur, C. & Bernier, J.-J. (1985). Effect of increased amount of pectin on solid-liquid meal digestion in healthy man. American Journal of Clinical Nutrition 42, 495503.CrossRefGoogle ScholarPubMed
Fontvielle, A.-M., Bornet, F., Rizkalla, S. W., Le François, P., Richard, P., Desplanques, N., Chevallier, A., Letanoux, M., Verel, A., Tchobroutsky, G. & Slama, G. (1988). In vitro and in vivo digestibility and metabolic effects of 3 wheat-flour products (white bread, French toast (Rusk) and French toast bran-enriched) in normal subjects. Diabéte et Métabolisme 14, 9296.Google Scholar
Grimes, D. S. & Goddard, J. (1977). Gastric emptying of wholemeal and white bread. Gut 18, 725729.CrossRefGoogle ScholarPubMed
Guilbot, A. & Mercier, C. (1985). Starch. In The Polysaccharides, pp. 209282 [Aspinall, G. O., editor]. London: Academic Press.Google Scholar
Holt, S., Heading, R. C., Carter, D. C., Prescott, L. F. & Tothill, P. (1979). Effect of gel fibre on gastric emptying and absorption of glucose and paracetamol. Lancet i, 636639.CrossRefGoogle Scholar
Hunt, J. N. (1960). The site of receptors slowing gastric emptying in response to starch in test meals. Journal of Physiology 154, 270276.CrossRefGoogle ScholarPubMed
Hunt, J. N. & Stubbs, D. F. (1975). The volume and energy content of meals as determinants of gastric emptying. Journal of Physiology 245, 209225.CrossRefGoogle ScholarPubMed
Husband, J., Husband, P. & Mallinson, C. N. (1970). Gastric emptying of starch meals in the newborn. Lancet ii, 290292.CrossRefGoogle Scholar
Jenkins, D. J. A., Ghafari, H., Wolever, T. M. S., Taylor, R. H., Jenkins, A. L., Barker, H. M., Fielden, H. & Bowling, A. C. (1982). Relationship between rate of digestion of foods and post-prandial glycemia. Diabetologia 22, 450455.CrossRefGoogle Scholar
Jenkins, D. J. A., Wolever, T. M. S., Taylor, R. H., Barker, H., Fielden, H., Baldwing, J. M., Bowling, A. C., Newman, H. C., Jenkins, A. L. & Goff, D. V. (1981). Glycemic index of foods: a physiological basis for carbohydrate exchange. American Journal of Clinical Nutrition 34, 362366.CrossRefGoogle Scholar
Lawaetz, O., Blackburn, A. M., Bloom, S. R., Aritas, Y. & Ralphs, D. N. L. (1983). Effect of pectin on gastric emptying and gut hormone release in the dumping syndrome. Scandinavian Journal of Gastroenterology 18, 327336.CrossRefGoogle ScholarPubMed
Leeds, A. R., Ralphs, D. N. L., Ebied, F., Metz, G. & Dilawari, J. B. (1981). Pectin in the dumping syndrome: reduction of symptoms and plasma volume changes. Lancet i, 10751078.CrossRefGoogle Scholar
Mourot, J., Thouvenot, P., Couet, C., Antoine, J. M., Krobicka, A. & Debry, G. (1988). Relationship between the rate of gastric emptying and glucose and insulin responses to starchy foods in young healthy adults. American Journal of Clinical Nutrition 48, 10351040.CrossRefGoogle ScholarPubMed
O'Dea, K., Nestel, P. J. & Antonoff, L. (1980). Physical factors influencing postprandial glucose and insulin responses to starch. American Journal of Clinical Nutrition 33, 760765.CrossRefGoogle ScholarPubMed
Rainbird, A. L. & Low, A. G. (1986). Effect of guar gum on gastric emptying in growing pigs. British Journal of Nutrition 55, 8798.CrossRefGoogle ScholarPubMed
Ray, K. T., Mansell, K. M., Knight, L. C., Malmud, L. S., Owen, O. E. & Boden, G. (1983). Long-term effects of dietary fiber on glucose tolerance and gastric emptying in noninsulin dependent diabetic patients. American Journal of Clinical Nutrition 37, 376381.CrossRefGoogle ScholarPubMed
Robin, J. P. (1976). Comportement du grain d'amidon à l'hydrolyse ménagée. Etude physico-chimique et enzymatique de la fraction insoluble. Contribution à la connaissance de l'amylopectine. Thèse de doctorat d'état ès Sciences Physiques, University of Paris.Google Scholar
Sandhu, K. S., El Samahi, M. M., Mena, I., Dooley, C. P. & Valenzuela, J. E. (1987). Effect of pectin on gastric emptying and gastroduodenal motility in normal subjects. Gastroenterology 92, 486492.CrossRefGoogle ScholarPubMed
Schwartz, S. E., Levine, R. A., Singh, A., Scheidecker, J. R. & Track, N. S. (1982). Sustained pectin ingestion delays gastric emptying. Gastroenterology 83, 812817.CrossRefGoogle ScholarPubMed
Siegel, J. A., Wu, R. K., Knight, L., Zelac, R. E., Stern, H. S. & Malmud, L. S. (1983). Radiation dose estimates for oral agents used in upper gastrointestinal disease. Journal of Nuclear Medicine 24, 835837.Google ScholarPubMed
Thompson, D. G., Wingate, D. L., Thomas, M. & Harrisson, D. (1982). Gastric emptying as a determinant of oral tolerance test. Gastroenterology 82, 5155.CrossRefGoogle Scholar
Tothill, P., McLoughlin, G. P. & Heading, R. C. (1978). Techniques and errors in scintigraphic measurements of gastric emptying. Journal of Nuclear Medicine 19, 256261.Google ScholarPubMed
Tothill, P., McLoughlin, G. P., Holt, S. & Heading, R. C. (1980). The effect of posture on errors on gastric emptying measurements. Physics in Medicine and Biology 25, 10711077.CrossRefGoogle ScholarPubMed
Winer, B. J. (1971). Statistical Principles in Experimental Design. New York: McGraw Hill.Google Scholar