Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T11:07:50.877Z Has data issue: false hasContentIssue false

Adsorption of bile salts from aqueous solution by plant fibre and cholestyramine

Published online by Cambridge University Press:  09 March 2007

D. G. Oakenfull
Affiliation:
CSIRO Division of Food Research, PO Box 52, NSW 2113, Australia
Dorothy E. Fenwick
Affiliation:
CSIRO Division of Food Research, PO Box 52, NSW 2113, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Adsorption of bile salts by dietary fibre is believed to promote their excretion and hence to reduce the serum cholesterol level in man and experimental animals.

2. We have tested a number of plant fibre fractions and other related materials for their ability to adsorb bile salts from aqueous solution. The ‘insoluble’ plant fractions were from ‘dry grain’ (a residue from brewing), apple, wheat bran, lucerne (Medicago sativa), soya beans, mung beans (Phaseolus mungo), chick peas (Cicer arietinum), rolled oats, spinach (Spinacia oleracea), sunflower seeds, sawdust and sheep faeces. The other materials were cholestyramine, pectin and lignins prepared from wheat bran and from sawdust.

3. Only cholestyramine and the fibre from lucerne, soya beans, mung beans, chick peas, spinach, and sunflower seeds adsorbed enough of either sodium cholate or sodium deoxycholate for adsorption to be detectable.

4. This result conflicts with a report that the lignin component of dietary fibre is responsible for adsorption of bile salts.

5. Adsorption of bile salts, when it occurs, may depend on the presence of saponins bound to the fibre.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

Balmer, J. & Zilversmit, D. B. (1974). J. Nutr. 104, 1319.CrossRefGoogle Scholar
Basu, N. & Rastogi, R. P. (1967). Phytochemistry 6, 1249.CrossRefGoogle Scholar
Birk, Y. (1969). In Toxic Constituents of Plant Foodstuffs, pp. 169210. New York: Academic Press.CrossRefGoogle Scholar
Birkner, J. H. & Kern, F. (1974). Gastroenterology 67, 237.CrossRefGoogle Scholar
Bondi, A., Birk, Y. & Gestetner, B. (1973). In Chemistry and Biochemistry of Herbage, Vol. 1, pp. 511528 [Butler, G. W. and Bailey, R. W., editors]. London: Academic Press.Google Scholar
Boyd, G. S., Eastwood, M. A. & MacLean, N. (1966). J. Lipid Res. 7, 83.CrossRefGoogle Scholar
Brunauer, S. (1945). The Adsorption of Gases and Vapors, vol. J. Princeton: Princeton University Press.Google Scholar
Brunauer, S., Deming, L. S., Deming, W. E. & Teller, E. (1940). J. Am. Chem. Soc. 62, 1723.CrossRefGoogle Scholar
Carey, M. C. & Small, D. M. (1972). Archs intern. Med. 130, 506.CrossRefGoogle Scholar
de Goot, A. P., Luyken, R. & Pikaar, N. A. (1963). Lancet ii, 303.CrossRefGoogle Scholar
Devi, K. S. & Kurup, P. A. (1970). Atherosclerosis 11, 479.CrossRefGoogle Scholar
Eastwood, M. A. & Hamilton, D. (1968). Biochim biophys. Acta 152, 165.CrossRefGoogle Scholar
Fisher, H. & Griminger, P. (1967). Proc. Soc. exp. Biol. Med. 126, 108.CrossRefGoogle Scholar
Fleischfresser, B. E. & Freeland, G. N. (1976). J. appl. Polymer Sci. 20, 3453.CrossRefGoogle Scholar
Giles, C. H., D'Silva, A. P. & Trivedi, A. S. (1970). J. appl. Chem. 20, 37.CrossRefGoogle Scholar
Giles, C. H. & Nakhwa, S. N. (1962). J. appl. Chem. 12, 266.CrossRefGoogle Scholar
Giles, C. H. & Tolia, A. H. (1964). J. appl. Chem. 14, 186.CrossRefGoogle Scholar
Harkin, J. M. (1973). In Chemistry and Biochemistry of Herbage, Vol. 1, pp. 323373 [Butler, G. W. and Bailey, R. W., editors]. London: Academic Press.Google Scholar
Harrap, B. S. & O'Donnell, I. J. (1954). J. phys. Chem. 58, 1097.CrossRefGoogle Scholar
Heaton, K. W. (1972). Bile Salts in Health and Disease, p. 129. Edinburgh: Churchill-Livingstone.Google Scholar
Hermus, R. J. J., Stasse-Wolthuis, M. & Hantvast, J. G. A. J. (1977). Lancet i, 905.CrossRefGoogle Scholar
Horlick, L., Cookson, F. B. & Federoff, S. (1967). Circulation 3536, 11.Google Scholar
Jenkins, D. J. A., Leeds, A. R., Newton, C. & Cummings, J. H. (1975). Lancet i, 1116.CrossRefGoogle Scholar
Joslyn, M. A. (1962). Adv. Fd Res. 1, 1.Google Scholar
Kefford, J. F. & Chandler, B. V. (1970). The Chemical Constituents of Citrus Fruits. New York: Academic Press.Google Scholar
Keys, A., Grande, F., & Anderson, J. T. (1961). Proc. Soc. exp. Biol. Med. 106, 555.CrossRefGoogle Scholar
Kirchner, J. G. (1967). In Technique of Organic Chemistry, Vol. x8, p. 607 [Weissberger, A. W., editor]. New York: Interscience.Google Scholar
Kritchevsky, D. & Story, J. A. (1974). J. Nutr. 104, 458.CrossRefGoogle Scholar
Kuksis, A. (1971). In Bile Acids, p. 204 [Nair, P. P. and Kritchevsky, D., editors]. New York: Plenum Press.Google Scholar
Maizel, J. V., Bunkardt, H. J. & Mitchell, H. K. (1964). Biochemistry, Easton, 3, 424.CrossRefGoogle Scholar
Malinkow, M. R., McLaughlin, P., Kohler, G. O. & Livingston, A. L. (1977). Steroids 29, 105.Google Scholar
Mathur, K. S., Khan, M. A. & Sharma, R. D. (1968). Br. Med. J. i, 30.CrossRefGoogle Scholar
Mikhailova, I. Y., Nikolova, M. P. & Stoyanov, D. P. (1965). Chem. Abstr. 64, 11735b.Google Scholar
Moore, J. H. (1967). Br. J. Nutr. 21, 207.CrossRefGoogle Scholar
Morris, R. J., Dye, W. B., & Gisler, P. S. (1961). J. org. Chem. 30, 166.CrossRefGoogle Scholar
Newman, H. A. I., Kummerow, F. A. & Scott, H. A. (1958). J. Poult. Sci. 37, 42.CrossRefGoogle Scholar
Oakenfull, D. & Fenwick, D. E. (1977). Aust. J. Chem. 30, 335.CrossRefGoogle Scholar
O'Dell, B. L., Regam, W. O. & Beach, T. J. (1959). Miss. Univ. Agric. Expt. Sta. Res. Bull. 702, 12.Google Scholar
Ponec, V., Knor, Z. & Cerny, S. (1974). Adsorption on Solids, pp. 596607. London: Butterworths.Google Scholar
Riccardi, B. A. & Fahrenbach, M. J. (1969). Proc. Soc. exp. Biol. Med. 124, 749.CrossRefGoogle Scholar
Robinson, R. A. & Stokes, R. H. (1955). Electrolyte Solutions, pp. 113127. London: Butterworths.Google Scholar
Shedlovsky, T. (1949). In Physical Methods of Organic Chemistry, Vol. 1, p. 1651 [Weissberger, A., editor]. New York: Interscience.Google Scholar
Sirtori, C. R., Agradi, E., Conti, F., Mantero, O. & Gatti, E. (1977). Lancet i, 275.CrossRefGoogle Scholar
Smith, A. K. & Circle, S. J. (1972). Soybeans: Chemistry and Technology, Vol. 1 , Westport: Avi Publishing Co.Google Scholar
Smith, M. B., Reynolds, T. M., Buckingham, C. P. & Back, J. F. (1974). Aust. J. Biol. Sci. 27, 349.CrossRefGoogle Scholar
Story, J. A. & Kritchevsky, D. (1976). J. Nutr. 106, 1292.CrossRefGoogle Scholar
Trowell, H. C. (1972). Atherosclerosis 16, 318.CrossRefGoogle ScholarPubMed
Trowell, H. C. (1975). In Refined Carbohydrate Foods and Disease, pp. 195226 [Burkitt, D. P. and Trowell, H. C., editors]. London: Academic Press.Google Scholar
Truswell, A. S. & Kay, R. M. (1976). Lancet i, 367.CrossRefGoogle Scholar
Van Soest, P. J. (1963). J. Ass. off agric. Chem. 46, 825.Google Scholar
Varshney, I. P. (1966). Indian J. Chem. 7, 446.Google Scholar
Yoka, N. & Iseda, S. (1965). Chem. Abstr. 62, 16359.Google Scholar