Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T15:17:08.644Z Has data issue: false hasContentIssue false

Adaptive increase in phytate digestibility by phosphorus-deprived rats and the relationship of intestinal phytase (EC 3.1.3.8) and alkaline phosphatase (EC 3.1.3.1) to phytate utilization

Published online by Cambridge University Press:  09 March 2007

Robert J. Moore*
Affiliation:
110 Animal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
Trygve L. Veum*
Affiliation:
110 Animal Science Research Center, University of Missouri, Columbia, Missouri 65211, USA
*
* Present address: Department of Animal Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061.
For reprints.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effects of phosphorus deprivation on phytate digestibility, phosphorus utilization and intestinal phytase (EC 3.1.3.8) and alkaline phosphatase (EC 3.1.3.1) in rats were investigated.

2. P deprivation was achieved by giving rats a diet containing 3 g P/kg and resulted in hypophosphataemia, hypercalcaemia, hypercalciuria, and lower levels of P absorbed and retained, and calcium retained.

3. Rats adapted to P deprivation by increasing the digestion of total dietary-P and phytate-P.

4. Levels of intestinal alkaline phosphatase and alkaline phytase were not different between the two treatment groups.

5. P deprivation in the rats given the marginal-P diet may be a result of a lower absorption of total dietary-P or increased absorption of inositol phosphates formed during the enzymic hydrolysis of phytate which are not readily utilized by the rat.

6. These results suggest that intestinal phytase and alkaline phosphatase do not play a role in the adaptive increase in phytate digestibility by rats given marginal-P diets. The adaptation may result from enhanced phytase or alkaline phosphatase synthesis by the gastrointestinal microflora stimulated by a lower level of P in the digesta.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

Association of Official Analytical Chemists (1980). Official Methods of Analysis, 13th ed. Washington, DC: Association of Official Analytical Chemists.Google Scholar
Birge, S. J. & Avioli, R. C. (1981). Am. J. Physiol. 240, E384.Google Scholar
Brautbar, N., Lee, D. B. N., Coburn, J. W. & Kleeman, C. R. (1979). Am. J. Physiol. 236, E283.Google Scholar
Davies, N. T. & Flett, A. A. (1978). Br. J. Nutr. 39, 307.CrossRefGoogle Scholar
DeBoland, A. R., Garner, G. B. & O'Dell, B. L. (1975). J. Agric. Food Chem. 23, 1186.CrossRefGoogle Scholar
Ellis, R., Morris, E. R. & Philpot, C. (1977). Analyt. Biochem. 77, 536.CrossRefGoogle Scholar
Erdman, J. W. Jr (1979). J. Am. Oil Chem. Soc. 56, 736.CrossRefGoogle Scholar
Fardiaz, D. & Markakis, P. (1981). J. Food Sci. 46, 523.CrossRefGoogle Scholar
Fiske, C. H. & Subbarow, Y. (1925). J. biol. Chem. 66, 375.CrossRefGoogle Scholar
Fox, J., Bunnett, N. W., Farrar, A. R. & Care, A. D. (1981). J. Endocr. 88, 147.CrossRefGoogle Scholar
Fox, J. & Care, A. D. (1978). J. Endocr. 77, 225.CrossRefGoogle Scholar
Gherke, C. W., Mayer, D. T., Pickett, E. E. & Runyon, C. V. (1950). Res. Bull. Univ. of Missouri no. 469.Google Scholar
Goldenberg, H. & Fernandez, A. (1966). Clin. Chem. 12, 871.CrossRefGoogle Scholar
Greaves, M. P., Anderson, G. & Webley, D. M. (1967). Biochim. biophys. Acta 132, 412.CrossRefGoogle Scholar
Henry, Y., Gueguen, L. & Rerat, A. (1979). Br. J. Nutr. 42, 127.CrossRefGoogle Scholar
Hughes, M. R., Brumbaugh, P. F., Haussler, M. R., Wergedal, J. E. & Baylink, D. J. (1975). Science, N.Y. 190, 578.CrossRefGoogle Scholar
Kempson, S. A., Kim, J. K., Northrup, T. E., Knox, R. G. & Dousa, T. P. (1979). Am. J. Physiol. 237, E465.Google Scholar
Kotb, A. R. & Luckey, T. D. (1972). Nutr. Abstr. Rev. 42, 813.Google Scholar
Lee, D. B. N., Brautbar, N., Walling, M. W., Silis, V., Coburn, J. W. & Kleeman, C. R. (1979). Am. J. Physiol. 236, E451.Google Scholar
Lim, P. E. & Tate, M. E. (1973). Biochim. biophys. Acta 302, 316.CrossRefGoogle Scholar
Lolas, G. M., Palamidis, N. & Markakis, P. (1976). Cereal Chem. 53, 867.Google Scholar
Lowry, O., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
McComb, R. B., Bowers, G. N. & Posen, S. (1979). Alkaline Phosphatase, p. 866. New York: Plenum Press.CrossRefGoogle Scholar
Møllgaard, H. (1946). Biochim. J. 40, 589.CrossRefGoogle Scholar
Moore, R. J. & Veum, T. L. (1982). Nutr. Rep. int. 25, 221.Google Scholar
Nahapetian, A. & Young, V. R. (1980). J. Nutr. 110, 1458.CrossRefGoogle Scholar
National Academy of Sciences (1978). Nutrient Requirements of Laboratory Animals, 3rd ed. Washington, DC: (US) National Academy of Sciences.Google Scholar
Perkin-Elmer Corp. (1971). Methods in Atomic Absorption Spectroscopy. Norwalk, CT: Perkin-Elmer Corp.Google Scholar
Peterlik, M. & Wasserman, R. H. (1980). Horm. Metab. Res. 12, 216.CrossRefGoogle Scholar
Pileggi, V. J. (1959). Archs. Biochem. Biophys. 80, 1.CrossRefGoogle Scholar
Pileggi, V. J., DeLuca, H. F. & Steenbock, H. (1955). Archs. Biochem. Biophys. 58, 194.CrossRefGoogle Scholar
Ramikrishnan, C. V. & Bhandari, S. D. (1979). Experientia 35, 994.CrossRefGoogle Scholar
Roberts, A. H. & Yudkin, J. (1961). Br. J. Nutr. 15, 457.CrossRefGoogle Scholar
Savage, J. E., Yohe, E. J. M., Pickett, E. E. & O'Dell, B. L. (1964). Poult. Sci. 43, 420.CrossRefGoogle Scholar
Shieh, T. R., Wodzinski, R. J. & Ware, J. H. (1969). J. Bact. 100, 1161.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1980). Statistical Methods, 7th ed. Ames, Iowa: Iowa State University Press.Google Scholar
Taylor, T. G. (1980). In Recent Advances in Animal Nutrition–1979, p. 23 [W., Haresign, D., Lewis, editors]. London: Butterworths.CrossRefGoogle Scholar
Thomas, W. C. Jr & Tilden, M. T. (1972). John Hopkins Med. J. 131, 133.Google Scholar
Van Den Berg, C. J., Hill, L. F. & Stanbury, S. W. (1972). Clin. Sci. 43, 377.CrossRefGoogle Scholar
Wise, A. & Gilburt, D. J. (1982). Appl. Environ. Microbiol. 43, 753.CrossRefGoogle Scholar