Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T20:08:54.093Z Has data issue: false hasContentIssue false

Adaptation of biliary response to dietary olive oil and sunflower-seed oil in dogs

Published online by Cambridge University Press:  09 March 2007

M. C. Ballesta
Affiliation:
Instituto de Nutrición y Technología de Alimentos and Departamento de Fisología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
M. Mañas
Affiliation:
Instituto de Nutrición y Technología de Alimentos and Departamento de Fisología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
E. Martinez-Victoria
Affiliation:
Instituto de Nutrición y Technología de Alimentos and Departamento de Fisología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
I. Seiquer
Affiliation:
Instituto de Nutrición y Technología de Alimentos and Departamento de Fisología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
J. R. Huertas
Affiliation:
Instituto de Nutrición y Technología de Alimentos and Departamento de Fisología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
F. J. Mataix
Affiliation:
Instituto de Nutrición y Technología de Alimentos and Departamento de Fisología, Facultad de Farmacia, Universidad de Granada, Granada, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effects of adaptation to dietary fat of different degrees of unsaturation (olive oil and sunflower oil) on bile secretion were studied in dogs at rest and after food intake. The animals were prepared with a bidirectional biliary cannula and a duodenal cannula to provide bile return. The two experimental groups were fed on diets containing 150 g fat/kg in the form of either olive oil (O) or sunflower-seed oil (S). The flow-rate under resting conditions and the patterns of response to food were similar in both experimental groups, although postprandial hypersection were significantly greater in volume and more prolonged in group O. No appreciable differences in concentration and output of biliary cholesterol or phospholipids were noted between the two groups. In contrast, the concentration and output of bile acids differed significantly both at rest and after food: concentration and output of bile acids were greater at rest in group S. However, after food intake, these responses were increased only in group O. The results suggest that the type of dietary fat affects biliary response to food, probably through differences in the contribution of the gall bladder in the two experimental groups.

Type
Lipid Metabolism
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Aponte, G. W., Fink, A. S., Meyer, J. H., Takemoto, K. & Taylor, I. L. (1985). Regional distribution and release of peptide YY (PYY) with fatty acids of different chain length. American Journal of Physiology 249, G745–G750.Google ScholarPubMed
Dam, H., Kruse, I., Jensen, M. K. & Kalemange, H. E. (1967). Studies on human bile. II. Influence of two different fats on the composition of human bile. Scandinavian Journal of Clinical and Laboratory Investigation 19, 367378.CrossRefGoogle ScholarPubMed
Everson, G. T., McKinley, C., Lawson, M., Johnson, M. & Kern, F. Jr (1982). Gallbladder function in the human female: effect of the ovulatory cycle, pregnancy and contraceptive steroids. Gastroenterology 82, 711719.CrossRefGoogle ScholarPubMed
Fujimura, M., Sakamoto, T. & Khalil, T. (1984). Physiological role of neurotensin in gallbladder contraction in the dog. Surgery Forum 35, 192194.Google Scholar
Justc, C., Corring, T. & Demarne, Y. (1983). Response of bilc flow, biliary lipids and bile acid pool in the pig to qualitative variations in dietary fats. Journal of Nutrition 113, 16911701.CrossRefGoogle Scholar
Juste, C., Corring, T. & Demarne, Y. (1985). Effect of a lipid diet on cholesterol saturation in the bile of pigs. Reproduction, Nutrition, Développement 25, 815821.CrossRefGoogle Scholar
Konturek, S. J., Tasller, J., Bilski, J., Jong, A. J., Jansen, J. B. M. J. & Lamers, C. B. (1986). Physiological role and localization of CCK release in dogs. American Journal of Physiology 250, G391–G397.Google ScholarPubMed
Ladas, S. D., Isaacs, P. E. T., Murphy, G. M. & Slader, G. E. (1984). Comparison of the effects of medium and long-chain triglyceride-containing liquid meals on gallbladder and small intestine function in normal men. Gut 25, 405411.CrossRefGoogle Scholar
Lawson, M., Everson, G. T., Klingsensmith, W. & Kern, F. Jr (1983). Coordination of gastric and gallbladder emptying after ingestion of a regular meal. Gastroenterology, 85, 866870.CrossRefGoogle ScholarPubMed
Levin, S. J., Johnson, C. J. & Boyle, A. J. (1961). Spectrophotometric determination of several bile acids as conjugates. Extraction with ethyl-acetate. Annals of Chemistry 33, 1407.CrossRefGoogle Scholar
Madrid, J. A., Mañas, M., Salido, G. M., Martinez-Victoria Muñoz, E. & Mataix, F. J. (1983). Use of bidirectional cannula to study the biliary secretion in conscious dogs. Laboratory Animals 17, 307310.CrossRefGoogle Scholar
Malagelada, J. R., Dimango, E. P., Summerskill, W. H. J. & Go, W. L. W. (1976). Regulation of pancreatic and gallbladder functions by intraluminal fatty acids and bile acids in man. Journal of Clinical Investigation 58, 493499.CrossRefGoogle ScholarPubMed
Mazer, A. N. & Carey, M. C. (1984). Mathematical model of biliary lipid secretion: a quantitative analysis of physiological and biochemical data from man and other species. Journal of Lipid Research 25, 932952.CrossRefGoogle ScholarPubMed
Modlin, I. M., Hansky, J., Singer, M. & Walsh, J. H. (1979). Evidence that the cholinergic enteropancreatic reflex may be independent of CCK release. Surgery USA 86, 352361.Google Scholar
Mutt, V. & Jorpes, E. (1971). Hormonal peptides of the upper intestine. Biochemical Journal 125, 57P58P.CrossRefGoogle ScholarPubMed
Nie, N. H., Hull, C. H., Jenkins, J. G., Streinbrenner, K. & Bent, D. H. (editors) (1983). SPSS: Statistical Package for the Social Sciences. New York: McGraw-Hill.Google Scholar
Pappas, T. N., Debas, H. T., Goto, Y. & Taylor, I. L. (1985). PYY inhibits meal stimulated pancreatic and gastric secretion. American Journal of Physiology 248, G118–G123.Google Scholar
Scott, R. B., Eidit, P. B. & Shaffer, E. A. (1985). Regulation of fasting canine duodenal bile acid delivery by sphincter of Oddi and gallbladder. American Journal of Physiology 249, G622–G633.Google ScholarPubMed
Seidel, J., Schulumberger, H., Klose, S., Ziegenhorn, J. & Wahlefeld, A. W. (1981). Reagent for the enzymatic determination of serum total cholesterol with improved lipolytic efficiency. Journal of Clinical Chemistry and Biochemistry 19, 838.Google Scholar
Shiratori, K., Watanabe, S., Chey, W. Y., Lee, K. Y. & Chang, T. M. (1986). Endogenous CCK drives gallbladder emptying in dogs. American Journal of Physiology 251, G553–G558.Google ScholarPubMed
Suzuki, T., Takahashi, I. & Itoh, Z. (1981). Motilin and gallbladder. New dimension in gastrointestinal physiology. Peptides 2, 229233.CrossRefGoogle ScholarPubMed
Takahashi, I., Suzuki, T., Aizawa, I. & Itoh, Z. (1982). Comparison of gallbladder contractions induced by motilin and cholecystokinin in dogs. Gastroenterology 87, 11541159.Google Scholar
Traynor, O. J., Dozois, R. R. & Dimagio, E. P. (1984). Canine interdigestive and postprandial gallbladder motility and emptying. American Journal of Physiology 246, G426–G432.Google ScholarPubMed
Walker, J. P., Khalil, T., Weiner, I., Fagan, C. J., Townsend, C. M., Greeley, G. H. Jr & Thompson, J. C. (1985). The role of neurotensin in human gallbladder motility. Annals of Surgery 201, 678683.CrossRefGoogle ScholarPubMed
Watanabe, N., Gimbell, N. S. & Johnston, C. G. (1962). Effect of polyunsaturated and saturated fatty acids on the cholesterol holding capacity of human bile. Archives of Surgery 85, 136141.CrossRefGoogle ScholarPubMed