Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T03:23:04.735Z Has data issue: false hasContentIssue false

Acidic fermentation in the caecum increases absorption of calcium and magnesium in the large intestine of the rat

Published online by Cambridge University Press:  09 March 2007

Hassan Younes
Affiliation:
Laboratoire des Maladies Métaboliques, INRA de Clermont-Ferrand/Theix, F-63122 Saint-Genés-Champanelle, France
Christian Demigné
Affiliation:
Laboratoire des Maladies Métaboliques, INRA de Clermont-Ferrand/Theix, F-63122 Saint-Genés-Champanelle, France
Christian Rémésy
Affiliation:
Laboratoire des Maladies Métaboliques, INRA de Clermont-Ferrand/Theix, F-63122 Saint-Genés-Champanelle, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of fermentation on colonic absorption of Ca and Mg was investigated in 8-week-old rats adapted to diets containing either digestible wheat starch (DS diets) or including resistant starch, i.e. 350 g raw potato starch/kg (RS diets). The dietary Ca level of the DS and RS diets was 2·5 or 7·5 g/kg. RS diets resulted in enlargements of the caecum together with hypertrophy of the caecal wall. Acidification of the caecal contents by mictobial fermentation of RS was influenced by the dietary Ca level. Very acidic pH conditions and relatively low concentrations of short-chain fatty acids, in the presence of lactic acid fermentation, were observed with the 2·5 g Ca/kg level. Rats fed on RS diets had a bhigher pencentage of soluble Ca (and inorganic phosphate) in the caecum, particularly of rats adapted to the high Ca level. As a result of the hypertrophy of the caecal wall and of an elevated concentration of soluble Cas, the caecal absorption of Ca was 5-6 fold higher in the RS groups than in the DS groups. The difference between dietary intakle and faecal excretion (DI-FE) of Ca was higher in rats fed on RS diets than in those fed on DS diets, when the dietary Ca level was 2·5 g/kg. With the higher Ca intake the elevated rate of Ca absorption from the caecum in RS-fed rats was not paralleled by an enhanced DI-EE difference: this suggests a shift of the Ca absorption towards the large intestine. Feeding Rs diets also enhanced Mg caecal absorption, resulting in the substatntially higher DI-FE difference for Mg, especially with the 2·5 g Ca/kg diets, because a high Ca intake tends to inhibit Mg absorption. The present findings support the view that the large intestine may represent a major site of Ca (and Mg) absorption when acidic fermentations take place. This process could improve the digestive Ca balance when the dietary Ca supply is low; when the Ca supply is affluent, it rather shits Ca absorption towards a more distal site fo the digestive tract.

Type
Mineral absorption
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Amman, P., Rizzoli, R. & Fleisch, H. (1986). Calcium absorption in rat large intestine in vivo: availability of dietary calcium. American Journal of Physiology 251, G14–G18.Google Scholar
Andon, M. B., Kanerva, R. L., Schulte, M. C. & Smith, K. T. (1993). Effect of age, calcium source, and radiolabeling method on whole body 47Ca retention in the rat. American Journal of Physiology 265, E554–E558.Google ScholarPubMed
Andrieux, C., Gadelle, D., Leprince, C. & Sacquet, E. (1989). Effects of some poorly digestible carbohydrates on bile acid bacterial transformations in the rat. British Journal of Nutrition 62, 103119.CrossRefGoogle ScholarPubMed
Bronner, F., Pansu, D. & Stein, W. D. (1986). An analysis of intestinal calcium transport across the rat intestine. American Journal of Physiology 250, G561–G569.Google ScholarPubMed
Cummings, J. H. (1981). Short-chain fatty acids in the human colon. Gut 16, 323329.CrossRefGoogle Scholar
Cummings, J. H., Southgate, D. A. T., Branche, W. J., Wiggins, H. S., Houston, H., Jenkins, D. J. A., Jivraj, T. & Hill, M. (1979). The digestion of pectin in the human gut and its effects on calcium absorption and large bowel functions. British Journal of Nutrition 41, 477485.CrossRefGoogle Scholar
Demigné, C. & Rémésy, C. (1985). Stimulation of absorption of volatile fatty acids and minerals in the caecum of rats adapted to very high fiber diet. Journal of Nutrition 115, 5360.CrossRefGoogle ScholarPubMed
Demigné, C., Levrat, M.-A. & Rémésy, C. (1989). Effects of feeding fermentable carbohydrates on the caecal concentrations of minerals and their fluxes between caecum and blood plasma in the rat. Journal of Nutrition 119, 16251630.CrossRefGoogle ScholarPubMed
Demigné, C., Rémésy, C. & Rayssiguier, Y. (1980). Effects of fermentable carbohydrates on volatile fatty acids, ammonia and mineral absorption in the rat caecum. Reproduction, Nutrition, Développement 20, 13511359.CrossRefGoogle ScholarPubMed
Donagelo, C. M. & Eggum, B. O. (1986). Comparative effects of wheat bran and barley husk on nutrient utilization in rats. 2. Zinc, calcium and phosphorus. British Journal of Nutrition 56, 269280.CrossRefGoogle Scholar
Englyst, H. N., Kingman, S. M. & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nuirition 46, Suppl. 2, S33–S50.Google ScholarPubMed
Favus, M. J. (1985). Factors that influence absorption and secretion of calcium in the small intestine and colon. American Journal of Physiology 248, G147–G157.Google ScholarPubMed
Garnet, L., Daviaud, D., Denis-Pouxviel, C., Rémésy, C. & Murat, J.-C. (1992). Effects of short-chain fatty acids on growth and differentiation of human colon-cancer cell line HT29. International Journal of Cancer 52, 286289.Google Scholar
Goodlad, J. S. & Mathers, J. C. (1990). Large bowel fermentation in rats given diets containing raw peas (Pisumsativum). British Journal of Nutrition 64, 569581.CrossRefGoogle Scholar
Gorvers, M. J. A. & Van der Meer, R. (1993). Effects of dietary calcium and phosphate on the intestinal interactions between calcium, phosphate, fatty acids, and bile acids. Gut 34, 365370.CrossRefGoogle Scholar
Gutmann, I. & Wahlefeld, A. W. (1974). Lactic acid determination. In Methods of Enzymatic Analysis, pp. 14641468 [Bergmeyer, H. U., editor]. New York: Academic Press.Google Scholar
Hardwick, L. L., Jones, M. R., Brautbar, N. & Lee, D. B. N. (1990). Site and mechanism of intestinal magnesiumGoogle ScholarPubMed
Hylander, E., Ladefoged, K. & Janum, S. (1980). The importance of the colon in calcium absorption following small-intestinal resection. Scandinavian Journal of Gastroenterology 15, 5560.CrossRefGoogle Scholar
Karbach, U. & Rummel, W. (1990). Cellular and paracellular magnesium transport across the terminal ileum of the rat and its interaction with the calcium transport. Gastroenterology 98, 985992.CrossRefGoogle ScholarPubMed
Kruh, J. (1982). Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Molecular & Cellular Biochemistry 42, 6582.Google ScholarPubMed
Lapré, J. A., De Vries, H. T. & Van der Meer, R. (1991). Dietary calcium phosphate inhibits cytotoxicity of fecal water. American Journal of Physiology 261, G907912.Google ScholarPubMed
Levrat, M.-A., Remesy, C. & Demigné, C. (1991 a). High propionic acid fermentations and mineral accumulation in the caecum of rats adapted to different levels of inulin. Journal of Nutrition 121, 17301737.Google ScholarPubMed
Levrat, M.-A., Remesy, C. & Demigné, C. (1991 b). Very acidic fermentations in the rat caecum during adaptation to a diet rich in amylase-resistant starch (crude potato starch). Journal of Nutritional Biochemistry 2, 3136.CrossRefGoogle Scholar
Lipkin, M. (1991). Application of intermediate biomarkers to studies of cancer prevention in the gastrointestinal tract: introduction and perspective. American Journal of Clinical Nutrition 54, 918928.CrossRefGoogle ScholarPubMed
Lupton, J. R. & Kurtz, P. P. (1993). Relationship of colonic luminal short-chain fatty acids and pH to in vivo cell proliferation in rats. Journal of Nutrition 123, 15221530.CrossRefGoogle ScholarPubMed
Lutz, T. & Scharrer, E. (1991). Effect of short-chain fatty acids on calcium absorption in the rat colon. Experimental Physiology 76, 615618.CrossRefGoogle ScholarPubMed
Lutz, T., Wurmli, R. & Scharrer, E. (1991). Short-chain fatty acids stimulate magnesium absorption by the colon. In Magnesium - A Relevant Ion, pp. 131137 [Lasserre, B. and Durlach, J., editors]. London: John Libbey.Google Scholar
McFarlane, G. T. & Cummings, J. H. (1991). The colonic flora, fermentation, and large bowel digestive function. In The Large Intestine: Physiology, Pathophysiology and Disease, pp. 5193 [Phillips, S. F. Pemberton, J. H. and Shorter, R. J., editors]. New York: Raven Press.Google Scholar
Morand, C., Remtsy, C., Levrat, M.-A. & Demigne, C. (1992). Replacement of digestible wheat starch by resistant corn starch alters splanchnic metabolism in rats. Journal of Nutrition 122, 345354.CrossRefGoogle ScholarPubMed
Nellans, H. N. & Goldsmith, R. S. (1981). Transepithelial calcium transport by rat caecum: high efficiency absorptive site. American Journal of Physiology 240, G424–G531.Google ScholarPubMed
Olesen, M., Rumessen, J. J. & Gudman-Hsyer, E. (1994). Intestinal transport and fermentation of resistant starch evaluated by the hydrogen breath test. European Journal of Clinical Nutrition 48, 692701.Google ScholarPubMed
Petith, M. M. & Schedl, H. P. (1976). Intestinal adaptation to dietary calcium restriction: in vivo cecal and colonic calcium transport in the rat. Gastroenterology 71, 10391042.CrossRefGoogle ScholarPubMed
Rayssiguier, Y. & Rémésy, C. (1977). Magnesium absorption in the caecum of rats related to volatile fatty acidGoogle Scholar
Rechkemmer, G., Ronnau, K. & Von Engelhardt, W. (1988). Fermentation of polysaccharides and absorption of short chain fatty acids in the mammalian hindgut. Comparative Biochemistry & Physiology 90A, 563568.CrossRefGoogle Scholar
Rémeacute;sy, C., Behr, S. R., Levrat, M.-A. & Demigné, C. (1992). Fiber fermentability in the rat caecum and its physiological consequences. Nutrition Research 12, 12351244.Google Scholar
Rémésy, C., Levrat, M.-A., Garnet, L. & Demigné, C. (1993). Caecal fermentations in rats fed oligosaccharides (inulin) are modulated by dietary calcium level. American Journal of Physiology 264, G855862.Google ScholarPubMed
Rheinhold, J. G., Fardji, B. & Ismail-Beigi, F. (1976). Decreased absorption of calcium, magnesium, zinc and phosphorus by humans due to increased fibre and phosphorus consumption as wheat bran. Journal of Nutrition 106, 493503.CrossRefGoogle Scholar
Scharrer, E. & Lutz, T. (1992). Relationship between volatile fatty acids and magnesium absorption in mono- and polygastric species. Magnesium Research 5, 5360.Google ScholarPubMed
Schulz, A. G. M., Van Amelsvoort, J. M. M. & Beynen, A. C. (1993). Dietary native resistant starch but not retrograded resistant starch raises magnesium and calcium absorption in rats. Journal of Nutrition 123, 17241731.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1989). Statistical Methods, 8th ed. Ames: Iowa State University Press.Google Scholar
Trinidad, P. T., Wolever, T. M. S & Thompson, L. U. (1993). Interactive effects of calcium and short chain fatty acids on absorption in the distal colon of man. Nutrition Research 13, 417425.CrossRefGoogle Scholar
Wargovich, M. J., Eng, V. W. S. & Newmark, H. L. (1983). Calcium ameliorates the toxic effect of deoxycholic on colonic epithelium. Carcinogenesis 4, 12051207.CrossRefGoogle ScholarPubMed
Würsch, P. (1989). Starch in human nutrition. In Nutritional Values of Cereal Products, Beans and Starches, pp. 199256 [Bourne, G. H. editor]. Basel: Karger.Google Scholar