Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T11:24:52.407Z Has data issue: false hasContentIssue false

Acetate supply and utilization by the tissues of sheep in vivo

Published online by Cambridge University Press:  09 March 2007

D. W. Pethick
Affiliation:
Biochemistry Department, ARC Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
D. B. Lindsay
Affiliation:
Biochemistry Department, ARC Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
P. J. Barker
Affiliation:
Biochemistry Department, ARC Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
A. J. Northrop
Affiliation:
Biochemistry Department, ARC Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The supply and utilisation of acetate has been estimated simultaneously in the whole animal and tissues of sheep using a combination of isotope-dilution and arteriovenous-difference techniques. Animals were made alloxandiabetic and acetate metabolism was compared when stabilized to normal metabolite levels with insulin (ITA sheep) and when food and insulin had been withdrawn for 36 h (fasted, diabetic sheep).

2. Acetate was simultaneously produced and utilized by all tissues. The exogenous (or gut) supply of acetate was the most important determinant of circulating acetate level. Endogenous acetate was produced mainly in the liver; 77 and 94% in fasted, diabetic and ITA sheep respectively. The production of endogenous acetate remained fairly constant and was not related to ketogenesis, which supports the idea that circulating acetate is largely a product of fermentation. The liver, gut and muscle utilized 17, 25 and 54% respectively (96% total) of the acetate entry rate in ITA sheep; a similar percentage utilization was found in fasted, diabetic sheep.

3. Acetate is largely oxidized to carbon dioxide in the gut and muscles of sheep and may account for 30–40% of their oxidative metabolism. This figure is similar to that for the whole animal. The total acetate taken up by the liver could account for 30% of the oxygen consumption; however, the liver may not directly oxidize all the utilized acetate.

4. The over-all conclusion from this study is that acetate is largely of dietary origin and the major factor determining its rate of utilization is the arterial concentration.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

REFERENCES

Anntrong, D. G. (1970). In Physiology and Digestion and Metabolism in the Ruminant, p. 422 [Phillipson, A. T., editor]. Newcastle-upon-Tyne: Oriel Press.Google Scholar
Annison, E. F., Bickerstaffe, F. & Linzell, J. L. (1974). J. agric. Sci., Camb. 82, 87.CrossRefGoogle Scholar
Annison, E. F., Brown, R. A., Leng, R. A., Lindsay, D. B. & West, C. E. (1967). Biochem. J. 104, 135.CrossRefGoogle Scholar
Annison, E. F., Leng, R. A., Lindsay, D. B. & White, R. R. (1963). Biochem. J. 88, 248.CrossRefGoogle Scholar
Annison, E. F. & Lindsay, D. B. (1961). Biochem. J. 78, 777.CrossRefGoogle Scholar
Annison, E. F. & Lindsay, D. B. (1962). Biochem. J. 85, 474.CrossRefGoogle Scholar
Annison, E. F. & White, R. R. (1962). Biochem. J. 84, 546.CrossRefGoogle Scholar
Ash, R. W. & Dobson, A. (1963). J. Physiol., Lond. 169, 39.CrossRefGoogle Scholar
Ballard, F. J., Hanson, R. W. & Kronfeld, O. S. (1969). Fedn Proc. Fedn Am. Socs Exp. Biol. 28, 218.Google Scholar
Bauman, D. E. & Davis, C. L. (1975). In Digestion and Metabolism in the Ruminant, p. 496 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, New South Wales: The University of New England Publishing Unit.Google Scholar
Bell, A. W. & Thompson, G. E. (1979). Am. J. Physiol. 237, E309.Google Scholar
Bergman, E. N. (1975). In Digestion and Metabolism in the Ruminant, p. 292 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, New South Wales: The University of New England Publishing Unit.Google Scholar
Bergman, E. N. & Wolff, J. E. (1971). Am. J. Physiol. 221, 586.CrossRefGoogle Scholar
Bradley, S. E., Ingelfinger, F. J., Bradley, C. P. & Curry, J. J. (1945). J. clin. Invest. 24, 890.CrossRefGoogle Scholar
Buckley, B. M. & Williamson, D. H. (1977). Biochem. J. 166, 539.CrossRefGoogle Scholar
Costa, N. D., Mclntosh, G. H. & Snoswell, A. M. (1976). Aust. J. biol. Sci. 29, 33.CrossRefGoogle Scholar
Domanski, A., Lindsay, D. B. & Setchell, B. P. (1974). J. Physiol., Lond. 242, 28P.Google Scholar
Hinks, N. T., Miller, S. C. & Setchell, B. P. (1966). Analyt. Biochem. 17, 551.CrossRefGoogle Scholar
Holdsworth, E. S., Neville, E., Nader, C., Jarrett, I. G. & Filsell, O. H. (1964). Biochim. biophys. Acta 86, 240.CrossRefGoogle Scholar
Jarrett, I. G., Filsell, O. H. & Ballard, F. J. (1974). Horm. Metab. Res. Suppl. 4, 111.Google Scholar
Katz, M. L. & Bergman, E. N. (1969 a). Am. J. vet. Res. 30, 655.Google Scholar
Katz, M. L. & Bergman, E. N. (1969 b). Am. J. Physiol. 216, 946.CrossRefGoogle Scholar
Knowles, S. E., Jarrett, I. G., Filsell, O. H. & Ballard, F. J. (1974). Biochem. J. 142, 401.CrossRefGoogle Scholar
Leng, R. A. & Annison, E. F. (1963). Biochem. J. 86, 319.CrossRefGoogle Scholar
Lindsay, D. B. (1978). In Occasional Publications of the British Society of Animal Production, no. 1, p. 99. BSAP, Milton Keynes.Google Scholar
Linzell, J. L. (1974). In Lactation, A Comprehensive Treatise, vol. 1, p. 143 [Larson, B. L. and Smith, V. R., editors]. New York and London: Academic Press.Google Scholar
McCrae, J. C., Wilson, S. & Milne, J. A. (1978). Proc. Nutr. Soc..Google Scholar
MAFF (1976). Energy allowances and feeding systems for ruminants, Technical Bulletin 33, Ministry of Agriculture, Fisheries and Food. London: H.M. Stationery Office.Google Scholar
Neill, A. R., Grime, D. W., Snoswell, A. M., Northrop, A. J., Lindsay, D. B. & Dawson, R. M. C. (1979). Biochem. J. 180 559.CrossRefGoogle Scholar
Palmquist, D. L. (1972). J. Nutr. 102, 1401.CrossRefGoogle Scholar
Palsson, H. & Verges, J. B. (1952). J. agric. Sci., Camb. 42, 1.CrossRefGoogle Scholar
Pappenheimer, J. R. & Setchell, B. P. (1972). J. Physiol., Lond. 226, 48P.Google Scholar
Paterson, J. Y. F. & Harrison, F. A. (1972). J. Endocr. 55, 338.CrossRefGoogle Scholar
Payne, J. M., Dew, S. M., Manson, R. & Faulks, M. (1970). Vet. Rec. 87, 150.CrossRefGoogle Scholar
Seufert, C. D., Graf, M., Janson, G., Kuhn, A. & Söling, H. D. (1974). Biochim. Biophys. Res. Comm. 57, 901.CrossRefGoogle Scholar
Smith, R. A. M. (1971). Biochem. J. 124, 877.CrossRefGoogle Scholar
Snoswell, A. M., Costa, N. D., McLean, J. G., Baird, G. D., Lomax, M. A. & Symonds, H. A. (1978). J. Dairy Sci. 45, 331.Google Scholar
Snoswell, A. M. & Koundakjian, P. P. (1972). Biochem. J. 127, 133.CrossRefGoogle Scholar
Stevens, C. E. (1970). In Physiology of Digestion and Metabolism in the Ruminant, p. 438 [Phillipson, A. T., editor]. Newcastle-upon-Tyne: Oriel Press.Google Scholar
Thompson, G. E., Gardner, J. W. & Bell, A. W. (1975). Q. Jl expt. Physiol. 60, 107.CrossRefGoogle Scholar
Werner, W., Rey, H. G. & Wielinger, H. (1970). Z. Analyt. Chem. 252, 224.CrossRefGoogle Scholar
Williamson, D. H., Mellanby, J. & Krebs, H. A. (1962). Biochem. J. 82, 90.CrossRefGoogle Scholar
Zierler, K. L. (1961). J. clin. Invest. 40, 2111.CrossRefGoogle Scholar