Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-04-25T07:06:22.264Z Has data issue: false hasContentIssue false

Reevaluation of the protein requirement in Chinese elderly adults without sarcopenia with the indicator amino acid oxidation technique

Published online by Cambridge University Press:  11 December 2023

Wenxuan Wu
Affiliation:
Key Laboratory of Trace Element Nutrition, National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
Yanhong Zhang
Affiliation:
Zhengding County Center for Disease Control and Prevention, Zhengding, Hebei, People’s Republic of China
Hui Ma
Affiliation:
Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, People’s Republic of China
Jiaxi Lu
Affiliation:
Key Laboratory of Trace Element Nutrition, National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
Fengge Chen
Affiliation:
Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, Hebei, People’s Republic of China
Haisong Zhou
Affiliation:
Zhengding County Center for Disease Control and Prevention, Zhengding, Hebei, People’s Republic of China
Shuhui Nie
Affiliation:
Key Laboratory of Trace Element Nutrition, National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
Yunqi Yang
Affiliation:
Key Laboratory of Trace Element Nutrition, National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
Rui Wang
Affiliation:
Key Laboratory of Trace Element Nutrition, National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
Weixiao Yue
Affiliation:
Key Laboratory of Trace Element Nutrition, National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
Min Li*
Affiliation:
Key Laboratory of Trace Element Nutrition, National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
Lichen Yang*
Affiliation:
Key Laboratory of Trace Element Nutrition, National Health Commission, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
*
*Corresponding authors: Min Li, email [email protected]; Lichen Yang, email [email protected]
*Corresponding authors: Min Li, email [email protected]; Lichen Yang, email [email protected]

Abstract

It is now generally believed that elderly may have slightly higher dietary protein requirements than those of the young-middle-aged adults. We have previously conducted related studies by the indicator amino acid oxidation (IAAO) technique, but more research data are needed to revise the protein requirements of the elderly. The main objective was to reevaluate the dietary protein requirements of healthy Chinese adults (65–80 years) without sarcopenia by using the IAAO technique. Nine healthy adult men and seven healthy adult women participated in the study, with protein intakes ranging from 0·1 to 1·8 g/(kg·d). Diets that delivered energy at a 1·5 resting energy expenditure were isocaloric. The amounts of phenylalanine and tyrosine needed to remain constant for each protein dosage. By applying a nonlinear mixed-effects model analysis on the F13CO2 data, which revealed a breakpoint in F13CO2 in response to graded protein intakes, the mean protein requirement was calculated. The mean estimated average requirement (EAR) for healthy elderly Chinese adults without sarcopenia was determined to be 0·94 g/(kg·d). The protein recommended nutrient intake (RNI) determined using various derivation approaches ranged from 1·13 to 1·36 g/(kg·d). The EAR for Chinese adults without sarcopenia aged 65–80 years in this study is 6·8 % higher than the current recommended EAR (0·88 g/(kg·d)). The RNI derived using various derivation approaches are all greater than the current RNI (0·98 g/(kg·d)). This trial was registered with the Chinese clinical trial registry as ChiCTR2200061382.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

These authors contributed equally to this work.

References

National Bureau of Statistics of the People’s Republic of China (2021) The Seventh National Census Bulletin (No. 5). http://www.stats.gov.cn/sj/tjgb/rkpcgb/qgrkpcgb/202302/t20230206_1902005.html (accessed June 2023).Google Scholar
Hengeveld, LM, de Goede, J, Afman, LA, et al. (2022) Health effects of increasing protein intake above the current population reference intake in older adults: a systematic review of the health council of the Netherlands. Adv Nutr 13, 10831117.CrossRefGoogle ScholarPubMed
Wolfe, RR, Miller, SL & Miller, KB (2008) Optimal protein intake in the elderly. Clin Nutr 27, 675684.CrossRefGoogle ScholarPubMed
Elango, R, Ball, RO & Pencharz, PB (2012) Recent advances in determining protein and amino acid requirements in humans. Br J Nutr 108, Suppl. 2, S22S30.CrossRefGoogle ScholarPubMed
Elango, R, Humayun, MA, Ball, RO, et al. (2011) Protein requirement of healthy school-age children determined by the indicator amino acid oxidation method. Am J Clin Nutr 94, 15451552.CrossRefGoogle ScholarPubMed
Humayun, MA, Elango, R, Ball, RO, et al. (2007) Reevaluation of the protein requirement in young men with the indicator amino acid oxidation technique. Am J Clin Nutr 86, 9951002.CrossRefGoogle ScholarPubMed
Stephens, TV, Payne, M, Ball, RO, et al. (2015) Protein requirements of healthy pregnant women during early and late gestation are higher than current recommendations. J Nutr 145, 7378.CrossRefGoogle ScholarPubMed
Tang, M, McCabe, GP, Elango, R, et al. (2014) Assessment of protein requirement in octogenarian women with use of the indicator amino acid oxidation technique. Am J Clin Nutr 99, 891898.CrossRefGoogle ScholarPubMed
Rafii, M, Chapman, K, Elango, R, et al. (2015) Dietary protein requirement of men >65 years old determined by the indicator amino acid oxidation technique is higher than the current estimated average requirement. J Nutr 146, 681687.CrossRefGoogle Scholar
Rafii, M, Chapman, K, Owens, J, et al. (2015) Dietary protein requirement of female adults >65 years determined by the indicator amino acid oxidation technique is higher than current recommendations. J Nutr 145, 1824.CrossRefGoogle ScholarPubMed
Mao, D, Chen, F, Wang, R, et al. (2020) Protein requirements of elderly Chinese adults are higher than current recommendations. J Nutr 150, 12081213.CrossRefGoogle ScholarPubMed
Putra, C, Konow, N, Gage, M, et al. (2021) Protein source and muscle health in older adults: a literature review. Nutrients 13, 743.CrossRefGoogle ScholarPubMed
Phillips, SM, Chevalier, S & Leidy, HJ (2016) Protein “requirements” beyond the RDA: implications for optimizing health. Appl Physiol Nutr Metab 41, 565572.CrossRefGoogle ScholarPubMed
Chen, LK, Woo, J, Assantachai, P, et al. (2020) Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc 21, 300307.CrossRefGoogle Scholar
Tian, Y, Liu, J, Zhang, Y, et al. (2011) Examination of Chinese habitual dietary protein requirements of Chinese young female adults by indicator amino acid method. Asia Pac J Clin Nutr 20, 390396.Google ScholarPubMed
Matthews, DE, Motil, KJ, Rohrbaugh, DK, et al. (1980) Measurement of leucine metabolism in man from a primed, continuous infusion of L- 1–3C leucine. Am J Physiol 238, E473E479.Google ScholarPubMed
Hoerr, RA, Yu, YM, Wagner, DA, et al. (1989) Recovery of 13C in breath from NaH13CO3 infused by gut and vein: effect of feeding. Am J Physiol 257, E426E438.Google ScholarPubMed
Hayamizu, K, Kato, M & Hattori, S (2011) Determining amino acid requirements from repeated observations on indicator amino acid oxidation method by mixed-effect change-point regression models. J Clin Biochem Nutr 49, 115120.CrossRefGoogle ScholarPubMed
Institute of Medicine, Food and Nutrition Board (2005) Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: The National Academies Press.Google Scholar
Ministry of Health, Labour and Welfare, Japan (2019) Dietary Reference Intakes for Japanese, 2020. https://www.mhlw.go.jp/content/10904750/000586553.pdf (accessed June 2023).Google Scholar
Nguyen, QD, Moodie, EM, Forget, MF, et al. (2021) Health heterogeneity in older adults: exploration in the Canadian longitudinal study on aging. J Am Geriatr Soc 69, 678687.CrossRefGoogle ScholarPubMed
Ferrucci, L & Kuchel, GA (2021) Heterogeneity of aging: individual risk factors, mechanisms, patient priorities, and outcomes. J Am Geriatr Soc 69, 610612.CrossRefGoogle ScholarPubMed
Cruz-Jentoft, AJ, Landi, F, Schneider, SM, et al. (2014) Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 43, 748759.CrossRefGoogle ScholarPubMed
Hayamizu, K, Aoki, Y, Izumo, N, et al. (2021) Estimation of inter-individual variability of protein requirement by indicator amino acid oxidation method. J Clin Biochem Nutr 68, 3236.CrossRefGoogle ScholarPubMed
Richter, M, Baerlocher, K, Bauer, JM, et al. (2019) Revised reference values for the intake of protein. Ann Nutr Metab 74, 242250.CrossRefGoogle ScholarPubMed
Becker, W, Anderssen, SA, Fogelholm, M, et al. (2013) NNR 2012: Nordic nutrition recommendations – integrating nutrition and physical activity. Ann Nutr Metab 63, 897.Google Scholar
National Health and Medical Research Council, Australian Government Department of Health and Ageing & New Zealand Ministry of Health (2006) Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes. Canberra: National Health and Medical Research Council.Google Scholar
Baum, JI, Kim, IY & Wolfe, RR (2016) Protein consumption and the elderly: what is the optimal level of intake? Nutrients 8, 359.CrossRefGoogle ScholarPubMed
Moore, DR, Churchward-Venne, TA, Witard, O, et al. (2015) Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older v. younger men. J Gerontol A Biol Sci Med Sci 70, 5762.CrossRefGoogle Scholar
Volpi, E, Campbell, WW, Dwyer, JT, et al. (2013) Is the optimal level of protein intake for older adults greater than the recommended dietary allowance? J Gerontol A Biol Sci Med Sci 68, 677681.CrossRefGoogle Scholar
Campbell, WW, Johnson, CA, McCabe, GP, et al. (2008) Dietary protein requirements of younger and older adults. Am J Clin Nutr 88, 13221329.CrossRefGoogle ScholarPubMed
Franzke, B, Neubauer, O, Cameron-Smith, D, et al. (2018) Dietary protein, muscle and physical function in the very old. Nutrients 10, 935.CrossRefGoogle ScholarPubMed
Deutz, NE, Bauer, JM, Barazzoni, R, et al. (2014) Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN expert group. Clin Nutr 33, 929936.CrossRefGoogle ScholarPubMed
Ren, X, Zhang, X, He, Q, et al. (2022) Prevalence of sarcopenia in Chinese community-dwelling elderly: a systematic review. BMC Public Health 22, 1702.CrossRefGoogle ScholarPubMed
Paddon-Jones, D, Short, KR, Campbell, WW, et al. (2008) Role of dietary protein in the sarcopenia of aging. Am J Clin Nutr 87, 1562s1566s.CrossRefGoogle ScholarPubMed
Wolfe, RR (2012) The role of dietary protein in optimizing muscle mass, function and health outcomes in older individuals. Br J Nutr 108, Suppl. 2, S88S93.CrossRefGoogle ScholarPubMed
Morley, JE, Argiles, JM, Evans, WJ, et al. (2010) Nutritional recommendations for the management of sarcopenia. J Am Med Dir Assoc 11, 391396.CrossRefGoogle ScholarPubMed
Fielding, RA, Vellas, B, Evans, WJ, et al. (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12, 249256.CrossRefGoogle ScholarPubMed
Rivlin, RS (2007) Keeping the young-elderly healthy: is it too late to improve our health through nutrition? Am J Clin Nutr 86, 1572s1576s.CrossRefGoogle ScholarPubMed
Lv, YB, Yuan, JQ, Mao, C, et al. (2018) Association of body mass index with disability in activities of daily living among Chinese adults 80 years of age or older. JAMA Netw Open 1, e181915.CrossRefGoogle ScholarPubMed
Supplementary material: File

Wu et al. supplementary material

Wu et al. supplementary material
Download Wu et al. supplementary material(File)
File 14.2 KB