Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-07T11:16:16.583Z Has data issue: false hasContentIssue false

Ability of mathematical models to predict faecal output with a pulse dose of indigestible marker

Published online by Cambridge University Press:  09 March 2007

P. Susmel
Affiliation:
Dipartimento di Scienze della Produzione Animale, Facoltà di Agraria, Università degli studi di Udine, via S. Mauro 2, 33010 Pagnacco, Udine, Italy
B. Stefanon
Affiliation:
Dipartimento di Scienze della Produzione Animale, Facoltà di Agraria, Università degli studi di Udine, via S. Mauro 2, 33010 Pagnacco, Udine, Italy
M. Spanghero
Affiliation:
Dipartimento di Scienze della Produzione Animale, Facoltà di Agraria, Università degli studi di Udine, via S. Mauro 2, 33010 Pagnacco, Udine, Italy
C. R. Mills
Affiliation:
Dipartimento di Scienze della Produzione Animale, Facoltà di Agraria, Università degli studi di Udine, via S. Mauro 2, 33010 Pagnacco, Udine, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of the work was to compare the faecal output and digestibility estimated by two mathematical approaches with the actual amount of faeces excreted or feed digested by Siental cows. Experimental data (intakes and digestibility measured over 5 d) and faecal Cr concentrations (measured at 0, 4, 8, 12, 16, 24, 32, 48, 56, 72, 96, 120 and 144 h after a pulse dose of Cr-mordanted forage) were collected from published experiments and fitted to a multicompartmental (MC) model and a γ age-dependent (AD) model. From a statistical point of view, the MC model was very satisfactory while the AD model produced lower r2 and higher SE values and reached satisfactory statistical values only for higher DM intakes (lactating animals). The MC model produced higher correlations with the digestibility values while the AD model generated better correlations with the intake data; DM intake and digestibilities were more highly correlated with the model's parameters than neutral-detergent fibre terms. The regression between the estimated faecal outputs obtained with the two models showed an intercept closeto 0 (P>0·05) and angular coefficients near 1; there was a good correspondence of the estimates especially for the lowest values of output. The r2 values of the regressions were 0·800 and 0·829 for the MC and AD models respectively and their SE were 2·93 and 2·63. The ability of the two models to predict faecal output and digestibility was very similar, independent of the statistical accuracy of fitting the Cr- concentration data. The results indicate that variation of Cr concentration is the result of the entire digestive process, i.e. dilution and passage, which interact in a competitive or associative way.

Type
Prediction of faecal output
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Aitchison, E., Gill, M., France, J. & Dhanoa, M. S. (1986). Comparison of methods to describe the kinetics of digestion and passage of fibre in sheep. Journal of the Science of Food and Agriculture 37, 10651072.CrossRefGoogle Scholar
Beauchemin, K. A. & Buchanan-Smith, J. G. (1989). Evaluation of markers, sampling sites and models for estimating rates of passage of silage or hay in dairy cows. Animal Feed Science and Technology 27, 5975.CrossRefGoogle Scholar
Colucci, P. E., Chase, L. E. & Van Soest, P. J. (1982). Feed intake, apparent diet digestibility and rate of particulate passage in dairy cattle. Journal of Dairy Science 65, 14451456.CrossRefGoogle Scholar
Colucci, P. E., Macleod, G. K., Grovum, W. L. & McMillan, I. (1984). Comparative digestion and digesta kinetics in sheep and cattle. Canadian Journal of Animal Science 64 Suppl., 173174.CrossRefGoogle Scholar
Cruickshank, G. J., Poppi, D. P. & Sykes, A. R. (1989). Theoretical considerations in the estimation of rumen fractional outflow rate from various sampling sites in the digestive tract. British Journal of Nutrition 62, 229239.CrossRefGoogle ScholarPubMed
Dhanoa, M. S., France, J. & Siddons, R. C. (1989). On using a doubleexponential model for describing faecal marker concentration curves. British Journal of Nutrition 141, 247251.Google ScholarPubMed
Dhanoa, M. S., Siddons, R. C., France, J. & Gale, D. L. (1985). A multicompartmental model to describe marker excretion patterns in ruminant faeces. British Journal of Nutrition 53, 663671.CrossRefGoogle ScholarPubMed
Ehle, F. R. (1984). Influence of feed particle density on particulate passage from the rumen of Holstein cows. Journal of Dairy Science 67, 693697.CrossRefGoogle Scholar
Ehle, F. R., Bas, F., Barno, B., Martin, R. & Leone, F. (1984). Particulate rumen turnover rate measurement as influenced by density of passage marker. Journal of Dairy Science 67, 29102913.CrossRefGoogle Scholar
Eliman, M. E. & Ørskov, E. R. (1984). Estimation of rates of outflow of protein supplement from the rumen by determining the rate of excretion of chromium-treated protein supplement in faeces. Animal Production 39, 7780.Google Scholar
Ellis, W. C., Matis, J. H. & Lascano, C. (1979). Quantitating ruminal turnover. Federation Proceedings 38, 27022706.Google ScholarPubMed
Ellis, W. C., Matis, J. H., Pond, K. R., Lascano, C. E. & Telford, J. P. (1984). Dietary influences on flow rate and digestive capacity. In Herbivore Nutrition in Subtropics and Tropics, pp. 269293 [Gilchrist, F. M. C. and Mackie, R. I., editors]. Johannesburg: The Science Press.Google Scholar
France, J., Dhanoa, M. S., Siddons, R. C., Thornley, J. H. M. & Poppi, D. P. (1988). Estimating the production of faeces by ruminants from faecal marker concentration curves. Journal of Theoretical Biology 135, 383391.CrossRefGoogle ScholarPubMed
France, J., Thornley, J. H. M., Dhanoa, M. S. & Siddons, R. C. (1985). On the mathematics of digesta flow kinetics. Journal of Theoretical Biology 113, 743758.CrossRefGoogle ScholarPubMed
France, J., Thornley, J. H. M., Siddons, R. C. & Dhanoa, M. S. (1993). On incorporating diffusion and viscosity concepts into compartmental models for analysing faecal marker excretion patterns in ruminants. British Journal of Nutrition 70, 369378.CrossRefGoogle ScholarPubMed
Grovum, W. L. & Williams, V. J. (1973). Rate of passage of digesta in sheep. Passage of marker through the alimentary tract and biological relevance. of rate constants derived from the change in concentration of marker in faeces. British Journal of Nutrition 30, 313329.CrossRefGoogle Scholar
Krysl, L. J., Galyean, M. L., Estell, R. E. & Sowell, B. F. (1988). Estimating digestibility and faecal output in lambs using internal and external markers. Journal of Agricultural Science, Cambridge 111, 1925.CrossRefGoogle Scholar
Lallés, J. P., Delval, E. & Poncet, C. (1991). Mean retention time of dietary residues within the gastrointestinal tract of young ruminants: a comparison of non-compartmental (algebraical) and compartmental (modelling) estimation methods. Animal Feed Science and Technology 35, 139159.CrossRefGoogle Scholar
Moore, J. A., Pond, K. R., Poore, M. H. & Goodwin, T. G. (1992). Influence of model and marker on digesta kinetic estimates for sheep. Journal of Animal Science 70, 35283540.CrossRefGoogle ScholarPubMed
Murphy, M. R., Kennedy, P. M. & Welch, J. G. (1989). Passage and rumination of inert particles varying in size and specific gravity as determined from analysis of faecal appearance using multicompartment models. British Journal of Nutrition 62, 481492.CrossRefGoogle ScholarPubMed
Owens, F. N. & Hanson, C. F. (1992). External and internal markers for appraising site and extent of digestion in ruminants. Journal of Dairy Science 75, 26052617.CrossRefGoogle ScholarPubMed
Pond, K. R., Ellis, W. C. & Matis, J. K. (1984). Development and Application of Compartmental Models for Estimating Various Parameters of Digesta Flow in Animals. Texas Agricultural Experimental Station, Animal Science Technical Report no. 8412. Texas: Texas A & M Agricultural University.Google Scholar
Pond, K. R., Ellis, W. C., Matis, J., Ferreiro, H. M. & Sutton, J. D. (1988). Compartment models for estimating attributes of digesta flow in cattle. British Journal of Nutrition 60, 571595.CrossRefGoogle ScholarPubMed
Quiroz, R. A., Pond, K. R., Tolley, E. A. & Johnson, W. L. (1988). Selection among nonlinear models for rate of passage studies in ruminants. Journal of Animal Science 66, 29772986.CrossRefGoogle ScholarPubMed
Ramanzin, M., Bailoni, L. & Bittante, G. (1990). Effetto del rapporto foraggi:concentrati e dei trattamento della paglia con ammoniaca sulla cinetica di trasito dei solidi e dei liquidi in ovini (Effect of forage:concentrate ratio and ammonia treatment of straw on the kinetics of solid and liquid passage in sheep). Zootecnica e Nutrizione Animale 16, 245254.Google Scholar
Ramanzin, M., Bailoni, L. & Bittante, G. (1991 a). Effetto della densita sul transito e sulla degradabilità ruminale: impiego della composizione densitometrica per la stima della velocità di passaggio e della degradabilita effettiva degli alimenti (Effect of specific gravity (SG) on rumen passage rate and degradation of feed particles: use of specific gravity distribution to estimate passage rate and effective degradability of feedstuffs). In Proceedings of IX Congresso Nazionale ASPA,Rome,3–7 06, pp. 69–77. Rome: ISMEA-Agricoltura Rierca.Google Scholar
Ramanzin, M., Bittante, G. & Bailoni, L. (1991 b). Evaluation of different chromium-mordanted wheat straws for passage rate studies. Journal of Dairy Science 74, 29892996.CrossRefGoogle Scholar
Robles, A. Y., Martz, F. A., Belyea, R. L. & Warren, W. P. (1981). Preparation and digestibility of alfalfa leaves and stems marked with gold or chromium. Journal of Animal Science 52, 14171420.CrossRefGoogle Scholar
Statistical Package for the Social sciences (1988). Base Manual +V2.0. Chicago, IL: SPSS Inc.Google Scholar
Stefanon, B., Mills, C. R. & Piasentier, E. (1992). Pattern of some internal and external markers along the gastrointestinal tract of cattle. Animal Feed Science and Technology 37, 143159.CrossRefGoogle Scholar
Stefanon, B. & Ovan, M. (1988). Impiego di bicromato sodico per la valutazione della velociti di transito ruminale degli alimenti (Use of sodium dichromate for the evaluation of feed outflow rate in the rumen). Zootecnica e Nutrizione Animale 15, 431436.Google Scholar
Stern, M. D., Ortega, M. E. & Satter, L. D. (1983). Retention time in the rumen and degradation of protein supplements fed to lactating dairy cattle. Journal of Dairy Science 66, 12641271.CrossRefGoogle ScholarPubMed
Susmel, P., Spanghero, M., Stefanon, B., Mills, C. R. & Cargnelutti, C. (1991). Effect of NDF content and physical form of fescue hay on rumen degradability, intake and rumen turn-over of cows. Animal Production 53, 305313.Google Scholar
Susmel, P., Spanghero, M., Stefanon, B., Mills, C. R. & Plazzotta, M. (1992 a). Nlosses, purine N derivatives and intestinal digestible protein requirements of cows at maintenance. Livestock Production Science 36, 213222.CrossRefGoogle Scholar
Susmel, P., Spanghero, M., Stefanon, B., Mills, C. R. & Plazzotta, E. (1994 a). Digestibility and allantoin excretion in cows fed diets differing in nitrogen content. Livestock Production Science 39, 9799.CrossRefGoogle Scholar
Susmel, P., Stefanon, B., Cargnelutti, C. & Spanghero, M. (1992 b). Impiego di markers in dose unica: stima del transito ruminale e della digeribilità mediante l'applicazione di diversi modelli matematici (Use of markers in single pulse dose: estimation of rumen outflow and total apparent digestibility using different mathematicalmodels). Zootecnica e Nutrizione Animale 18, 111123.Google Scholar
Susmel, P., Stefanon, B., Mills, C. R. & Spanghero, M. (1990 a). Applicazione di modelli matematici diversi alle variazioni di concentrazione di un marker indigeribile neHe feci per la valutazione della velocita di transito ruminale dei foraggi (Application of mathematical models to variations in marker concentration in faeces to estimate rumen outflow rate of forages). Zootecnica e Nutrizione Animale 16, 207218.Google Scholar
Susmel, P., Stefanon, B., Mills, C. R. & Spanghero, M. (1990 b). Rumen degradability of organic matter, nitrogen and fibre fractions in forages. Animal Production 51, 515526.Google Scholar
Susmel, P., Stefanon, B., Plazzotta, E., Spanghero, M. & Mills, C. R. (1994 b). The effect of energy and protein intake on the excretion of purine derivatives. Journal of Agricultural Science, Cambridge 123, 257265.CrossRefGoogle Scholar
Uden, P., Colucci, P. E. & Van Soest, P. J. (1980). Investigation of chromium, cerium and cobalt as markers in digesta. Rate of passage studies. Journal of the Science of Food and Agriculture 31, 625632.CrossRefGoogle ScholarPubMed