We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
L. Ma, J. Teruya-Feldstein, R. A. Weinberg. Nature 2007; 449(7163): 682–688; Epub 26 September 2007.
Abstract of the original article:
MicroRNAs have been implicated in regulating diverse cellular pathways. Although there is emerging evidence that some microRNAs can function as oncogenes or tumour suppressors, the role of microRNAs in mediating cancer metastasis remains unexplored. Here we show, using a combination of mouse and human cells, that microRNA-10b (miR-10b) is highly expressed in metastatic breast cancer cells and positively regulates cell migration and invasion. Overexpression of miR-10b in otherwise non-metastatic breast tumours initiates robust invasion and metastasis. Expression of miR-10b is induced by the transcription factor Twist, which binds directly to the putative promoter of miR-10b (MIRN10B). The miR-10b induced by Twist proceeds to inhibit translation of the messenger RNA encoding homeobox D10, resulting in increased expression of a well-characterized pro-metastatic gene, RhoC. Significantly, the level of miR-10b expression in primary breast carcinomas correlates with clinical progression. These findings suggest the workings of an undescribed regulatory pathway, in which a pleiotropic transcription factor induces expression of a specific microRNA, which suppresses its direct target and in turn activates another pro-metastatic gene, leading to tumour cell invasion and metastasis.