Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T16:11:57.878Z Has data issue: false hasContentIssue false

A comparison of systematic instruction, error-based learning and trial and error to train the use of smartphone memory apps after acquired brain injury: A three-armed phase II randomised controlled trial study protocol

Published online by Cambridge University Press:  13 July 2020

Diana Ramirez-Hernandez
Affiliation:
School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
Renerus J. Stolwyk
Affiliation:
School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia Monash-Epworth Rehabilitation Research Centre, Melbourne, Australia
Tamara Ownsworth
Affiliation:
School of Applied Psychology, Griffith University, Mt Gravatt, Australia
Dana Wong*
Affiliation:
School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia Monash-Epworth Rehabilitation Research Centre, Melbourne, Australia School of Psychology and Public Health, La Trobe University, Melbourne, Australia
*
*Corresponding author. Email: [email protected]
Get access

Abstract

Background:

The uptake of smartphones as external compensatory memory aids following an acquired brain injury (ABI) in rehabilitation settings is low. Potential reasons for this include professionals not having evidence-based guidelines regarding the best methods to train smartphone use and prospective users not being familiar with technology and/or having memory and learning difficulties. This paper describes the protocol of a study that aims to compare the efficacy of three training methods (Systematic Instruction, Error-based Learning and Trial-and-Error) for training the use of a smartphone reminder app, in people with ABI presenting with memory complaints.

Methods/Design:

This is a three-armed, assessor-blinded, Phase II randomised controlled trial. The estimated sample size is 51 participants aged >18 years, who are equally randomised to one of the three training groups. They are seen across four sessions: one to conduct baseline measures; one for training the use of an app and two for follow-up assessments (1- and 6-weeks post-training). The main outcome measure is proficiency of performance in tasks with the trained app. Secondary outcomes include generalisation of skills to other apps, number of errors committed while attempting the tasks, frequency of smartphone usage in general and as a memory aid and confidence in smartphone use and memory self-efficacy. Outcome measures are collected by an independent blinded assessor. Proficiency of performance, generalisation of skills and error commission are measured immediately post-training and at the two follow-up sessions. The other secondary measures are taken pre-intervention and at the two follow-up sessions.

Discussion:

This study will provide initial evidence regarding the efficacy of three different methods to train ABI survivors with memory difficulties in how to use smartphone apps as compensatory memory aids. The results could inform a larger Phase III trial and advance knowledge concerning the advantages or disadvantages of using error-reducing and trial-and-error techniques. Further, the findings could determine the potential of error-based learning as an emerging training method for people with memory impairment within rehabilitation.

Type
Protocol
Copyright
© Australasian Society for the Study of Brain Impairment 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

WunderkinderGmbH. (2015). Wunderlist: To-Do List & Tasks (V. 3.4.15) [Mobile application software]. Retrieved from https://www.wunderlist.com Google Scholar
24meLtd. (2018). 24me smart personal assistant (V. 5.5.6) [Mobile application software]. Retrieved from https://www.twentyfour.me.Google Scholar
AIHW. (2007). Disability in Australia: Acquired brain injury [Bulletin no. 55. Cat no. AUS 96]. Canberra: Australian Institute of Health and Welfare.Google Scholar
Bellg, A., Borrelli, B., Resnick, B., Hecht, J., Sharp Minicucci, D., Ory, M., … Czajkowski, S. (2004). Enhancing treatment fidelity in health behavior change studies: Best practices and recommendations from the NIH behavior change consortium. 23. doi: 10.1037/0278-6133.23.5.443 CrossRefGoogle Scholar
Benedict, R., Schretlen, D., Groninger, L., Dobraski, M., & Shpritz, B. (1996). Revision of the brief visuospatial memory test: Studies of normal performance, reliability, and validity. 8. doi: 10.1037/1040-3590.8.2.145 CrossRefGoogle Scholar
Bier, N., Van Der Linden, M., Gagnon, L., Desrosiers, J., Adam, S., Louveaux, S., & Saint-Mleux, J. (2008). Face-name association learning in early Alzheimer’s disease: A comparison of learning methods and their underlying mechanisms. Neuropsychological Rehabilitation, 18(3), 343371. doi: 10.1080/09602010701694723 CrossRefGoogle ScholarPubMed
Borrelli, B. (2011). The assessment, monitoring, and enhancement of treatment fidelity in public health clinical trials. Journal of Public Health Dentistry, 71(s1), S52S63. doi: 10.1111/j.1752-7325.2011.00233.x CrossRefGoogle ScholarPubMed
Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77101. doi: 10.1191/1478088706qp063oa CrossRefGoogle Scholar
Brkic, L., Shaw, L., van Wijck, F., Francis, R., Price, C., Forster, A., … Rodgers, H. (2016). Repetitive arm functional tasks after stroke (RAFTAS): A pilot randomised controlled trial [Clinical report]. Pilot and Feasibility Studies, 2(1), 5065.CrossRefGoogle Scholar
Burgess, P. W., & Shallice, T. (1997). The Hayling and Brixton tests. Edmonds, England: Thames Valley Test Company Limited.Google Scholar
Charters, E., Gillett, L., & Simpson, G. K. (2015). Efficacy of electronic portable assistive devices for people with acquired brain injury: A systematic review. Neuropsychological Rehabilitation, 25(1), 82121. doi: 10.1080/09602011.2014.942672 CrossRefGoogle ScholarPubMed
CoziInc. (2018). Cozi family organiser (V. 9.8.8) [Mobile application software]. Retrieved from https://www.cozi.com.Google Scholar
Cristofori, I., & Levin, H. S. (2015). Traumatic brain injury and cognition. Handbook of clinical neurology, 128, 579. doi: 10.1016/B978-0-444-63521-1.00037-6 CrossRefGoogle ScholarPubMed
das Nair, R., & Lincoln, N. B. (2013). The effectiveness of memory rehabilitation following neurological disabilities: A qualitative inquiry of patient perspectives. Neuropsychological Rehabilitation, 23(4), 528545. doi: 10.1080/09602011.2013.792290 CrossRefGoogle ScholarPubMed
Das Nair, R., & Lincoln, N. B. (2012). Evaluation of rehabilitation of memory in neurological disabilities (ReMiND): A randomized controlled trial. Clinical Rehabilitation, 26(10), 894903. doi: 10.1177/0269215511435424 CrossRefGoogle ScholarPubMed
de Joode, E., van Heugten, C., Verhey, F., & van Boxtel, M. (2010). Efficacy and usability of assistive technology for patients with cognitive deficits: A systematic review. Clinical Rehabilitation, 24(8), 701714. doi: 10.1177/0269215510367551 CrossRefGoogle ScholarPubMed
de Werd, M. M., Boelen, D., Rikkert, M. G., & Kessels, R. P. (2013). Errorless learning of everyday tasks in people with dementia. Clinical Interventions in Aging, 8, 11771190. doi: 10.2147/cia.s46809 Google ScholarPubMed
Delis, D. C., Kaplan, E., Kramer, J. H., & Ober, B. A. (2008). California verbal learning test (CVLT). ECPA.Google Scholar
Dunn, J., & Clare, L. (2007). Learning face-name associations in early-stage dementia: Comparing the effects of errorless learning and effortful processing. Neuropsychological Rehabilitation, 17(6), 735754. doi: 10.1080/09602010701218317 CrossRefGoogle ScholarPubMed
Ehlhardt, L. A., Sohlberg, M. M., Kennedy, M., Coelho, C., Ylvisaker, M., Turkstra, L., & Yorkston, K. (2008). Evidence-based practice guidelines for instructing individuals with neurogenic memory impairments: What have we learned in the past 20 years? Neuropsychological Rehabilitayion, 18(3), 300342. doi: 10.1080/09602010701733190 CrossRefGoogle ScholarPubMed
Evans, J. J., Wilson, B., Schuri, U., Andrade, J., Baddeley, A., Bruna, O., … Taussik, I. (2000). A comparison of ‘Errorless’ and ‘Trial-and-error’ learning methods for teaching individuals with acquired memory deficits. Neuropsychological Rehabilitation, 10(1), 67101. doi: 10.1080/096020100389309 CrossRefGoogle Scholar
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 75191.CrossRefGoogle ScholarPubMed
Ferguson, S., Friedland, D., & Woodberry, E. (2015). Smartphone technology: Gentle reminders of everyday tasks for those with prospective memory difficulties post-brain injury. Brain Injury, 29(5), 583591. doi: 10.3109/02699052.2014.1002109 CrossRefGoogle ScholarPubMed
Fleming, J. M., Shum, D., Strong, J., & Lightbody, S. (2005). Prospective memory rehabilitation for adults with traumatic brain injury: A compensatory training programme. Brain Injury, 19(1), 110.CrossRefGoogle ScholarPubMed
Frane, J. W. (1998). A method of biased coin randomization, its implementation, and its validation. Drug Information Journal, 32(2), 423432. doi: 10.1177/009286159803200213 CrossRefGoogle Scholar
Garcia, P. Y., Roussel, M., Bugnicourt, J. M., Lamy, C., Canaple, S., Peltier, J., … Godefroy, O. (2013). Cognitive impairment and dementia after intracerebral hemorrhage: A cross-sectional study of a hospital-based series. Journal of Stroke & Cerebrovascular Diseases, 22(1), 8086. doi: 10.1016/j.jstrokecerebrovasdis.2011.06.013 CrossRefGoogle ScholarPubMed
Garcia-Molina, A., Roig-Rovira, T., Ensenat-Cantallops, A., Sanchez-Carrion, R., Pico-Azanza, N., Bernabeu, M., & Tormos, J. (2006). Neuropsychological profile of persons with anoxic brain injury: Differences regarding physiopathological mechanism. Brain Injury, 20(11), 11391145. doi: 10.1080/02699050600983248 CrossRefGoogle ScholarPubMed
Hu, F., Hu, Y., Ma, Z., & Rosenberger, W. F. (2014). Adaptive randomization for balancing over covariates. Wiley Interdisciplinary Reviews: Computational Statistics, 6(4), 288303. doi: 10.1002/wics.1309 CrossRefGoogle Scholar
Jamieson, M., Cullen, B., McGee-Lennon, M., Brewster, S., & Evans, J. J. (2014). The efficacy of cognitive prosthetic technology for people with memory impairments: A systematic review and meta-analysis. Neuropsychological Rehabilitation, 24(3–4), 419444. doi: 10.1080/09602011.2013.825632 CrossRefGoogle ScholarPubMed
Jokinen, H., Melkas, S., Ylikoski, R., Pohjasvaara, T., Kaste, M., Erkinjuntti, T., & Hietanen, M. (2015). Post-stroke cognitive impairment is common even after successful clinical recovery. European Journal of Neurology, 22(9), 12881294. doi: 10.1111/ene.12743 CrossRefGoogle ScholarPubMed
Kessels, R. P., & de Haan, E. H. (2003). Implicit learning in memory rehabilitation: A meta-analysis on errorless learning and vanishing cues methods. Journal of Clinical and Experimental Neuropsychology, 25(6), 805814. doi: 10.1076/jcen.25.6.805.16474 CrossRefGoogle ScholarPubMed
Lachman, M. E., Bandura, M., Weaver, S. L., & Elliott, E. (1995). Assessing memory control beliefs: The memory controllability inventory. Aging, Neuropsychology, and Cognition, 2(1), 6784. doi: 10.1080/13825589508256589 CrossRefGoogle Scholar
Lin, J. Y., & Lu, Y. (2014). Establishing a data monitoring committee for clinical trials. Shanghai Archives of Psychiatry, 26(1), 5456. doi: 10.3969/j.issn.1002-0829.2014.01.009 Google ScholarPubMed
Maher, C. G., Sherrington, C., Herbert, R. D., Moseley, A. M., & Elkins, M. (2003). Reliability of the PEDro scale for rating quality of randomized controlled trials. Physical Therapy, 83(8), 713721. doi: 10.1093/ptj/83.8.713 CrossRefGoogle ScholarPubMed
Mares, K., Cross, J., Clark, A., Vaughan, S., Barton, G. R., Poland, F., … Pomeroy, V. M. (2014). Feasibility of a randomized controlled trial of functional strength training for people between six months and five years after stroke: FeSTivaLS trial [journal article]. Trials, 15(1), 322. doi: 10.1186/1745-6215-15-322 CrossRefGoogle Scholar
Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., …Chertkow, H. (2005). The montreal cognitive assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695699. doi: 10.1111/j.1532-5415.2005.53221.x CrossRefGoogle ScholarPubMed
Nicolle, D. C. M., & Moses, J. L. (2018). A systematic review of the neuropsychological sequelae of people diagnosed with anti N-Methyl-D-Aspartate receptor encephalitis in the acute and chronic phases. Archives of Clinical Neuropsychology, 33(8), 964. doi: 10.1093/arclin/acy005 Google ScholarPubMed
Nouri, F., & Lincoln, N. (1987). An extended activities of daily living scale for stroke patients. Clinical Rehabilitation, 1(4), 301305. doi: 10.1177/026921558700100409 CrossRefGoogle Scholar
Oort, Q., Taphoorn, M. J. B., Sikkes, S. A. M., Uitdehaag, B. M. J., Reijneveld, J. C., & Dirven, L. (2019). Evaluation of the content coverage of questionnaires containing basic and instrumental activities of daily living (ADL) used in adult patients with brain tumors. Journal of Neuro-Oncology, 143(1), 113. doi: 10.1007/s11060-019-03136-9 CrossRefGoogle ScholarPubMed
Ownsworth, T., Fleming, J., Tate, R., Beadle, E., Griffin, J., Kendall, M., … Shum, D. H. K. (2017). Do people with severe traumatic brain injury benefit from making errors? A randomized controlled trial of error-based and errorless learning. Neurorehabilitation and Neural Repair, 1545968317740635. doi: 10.1177/1545968317740635 Google ScholarPubMed
Ownsworth, T., Fleming, J., Tate, R., Shum, D. H., Griffin, J., Schmidt, J., … Chevignard, M. (2013). Comparison of error-based and errorless learning for people with severe traumatic brain injury: Study protocol for a randomized control trial. Trials, 14(1), 369. doi: 10.1186/1745-6215-14-369 CrossRefGoogle ScholarPubMed
Ponsford, J., Sloan, S., & Snow, P. (2012). Traumatic brain injury: Rehabilitation for everyday adaptive living (2nd ed). Taylor & Francis Group. http://ebookcentral.proquest.com/lib/monash/detail.action?docID=1046987.CrossRefGoogle Scholar
Powell, L. E., Glang, A., Ettel, D., Todis, B., Sohlberg, M., & Albin, R. (2012). Systematic instruction for individuals with acquired brain injury: Results of a randomized controlled trial. Neuropsychological Rehabilitation, 22(1), 85112. doi: 10.1080/09602011.2011.640466 CrossRefGoogle Scholar
Rees, L., Marshall, S., Hartridge, C., Mackie, D., & Weiser, M. (2007). Cognitive interventions post acquired brain injury. Brain Injury, 21(2), 161200. doi: 10.1080/02699050701201813 CrossRefGoogle ScholarPubMed
Reitan, R. M., & Wolfson, D. (1985). The Halstead-Reitan neuropsychological test battery: Theory and clinical interpretation. Tucson, NZ: Neuropsychology Press.Google Scholar
Riley, G. A., & Venn, P. (2015). A comparison of automatic and intentional instructions when using the method of vanishing cues in acquired brain injury. Neuropsychological Rehabilitation, 25(1), 5381. doi: 10.1080/09602011.2014.941294 CrossRefGoogle ScholarPubMed
Royle, J., & Lincoln, N. B. (2008). The everyday memory questionnaire-revised: Development of a 13-item scale. Disability and Rehabilitation, 30(2), 114121. doi: 10.1080/09638280701223876 CrossRefGoogle ScholarPubMed
Scoccianti, S., Detti, B., Cipressi, S., Iannalfi, A., Franzese, C., & Biti, G. (2012). Changes in neurocognitive functioning and quality of life in adult patients with brain tumors treated with radiotherapy. Journal of Neuro-Oncology, 108(2), 291308. doi: 10.1007/s11060-012-0821-8 CrossRefGoogle ScholarPubMed
Sohlberg, M., Kennedy, M., Avery, J., Coelho, C., Turkstra, L., Ylvisaker, M., & Yorkston, K. (2007). Evidence-based practice for the use of external aids as a memory compensation technique. Journal of Medical Speech-Language Pathology, 15(1), xvli.Google Scholar
Sohlberg, M., & Turkstra, L. S. (2011). Optimizing cognitive rehabilitation: Effective instructional methods. New York, US: Guilford Press.Google Scholar
Svoboda, E., Richards, B., Leach, L., & Mertens, V. (2012). PDA and smartphone use by individuals with moderate-to-severe memory impairment: Application of a theory-driven training programme. Neuropsychological Rehabilitation, 22(3), 408427. doi: 10.1080/09602011.2011.652498 CrossRefGoogle ScholarPubMed
Svoboda, E., Richards, B., Polsinelli, A., & Guger, S. (2010). A theory-driven training programme in the use of emerging commercial technology: Application to an adolescent with severe memory impairment. Neuropsychological Rehabilitation, 20(4), 562586. doi: 10.1080/09602011003669918 CrossRefGoogle Scholar
Systweak. (2017). Social fever (V. 1.0.7.1) [Mobile application software]. Retrieved from https://www.systweak.com/social-fever/.Google Scholar
Taphoorn, M. J., & Klein, M. (2004). Cognitive deficits in adult patients with brain tumours. Lancet Neurology, 3(3), 159168. doi: 10.1016/S1474-4422(04)00680-5 CrossRefGoogle ScholarPubMed
Turner, C. E., Barker-Collo, S. L., Connell, C. J. W., & Gant, N. (2015). Acute hypoxic gas breathing severely impairs cognition and task learning in humans. Physiology & Behavior, 142, 104110. doi: 10.1016/j.physbeh.2015.02.006 CrossRefGoogle ScholarPubMed
Wade, T. K., & Troy, J. C. (2001). Mobile phones as a new memory aid: A preliminary investigation using case studies. Brain Injury, 15(4), 305320. doi: 10.1080/026990501750111256 CrossRefGoogle ScholarPubMed
Wild, M. R. (2013). Assistive Technology for Cognition Following Brain Injury: Guidelines for Device and App Selection (Vol. 23). doi: 10.1044/nnsld23.2.49 CrossRefGoogle Scholar
Wilson, B. A. (2017). The assessment, evaluation and rehabilitation of everyday memory problems: Selected papers of Barbara A. Wilson. New York, NY: Taylor & Francis Group. https://books.google.com.au/books?id=hoVkswEACAAJ.Google Scholar
Wilson, B., Baddeley, A., Evans, J., & Shiel, A. (1994). Errorless learning in the rehabilitation of memory impaired people. Neuropsychological Rehabilitation, 4(3), 307326. doi: 10.1080/09602019408401463 CrossRefGoogle Scholar
Wilson, B., Winegardner, J., van Heugten, C. M., & Ownsworth, T. (2017). Neuropsychological eehabilitation: The international handbook. New York, US: Routledge. http://ebookcentral.proquest.com/lib/monash/detail.action?docID=4898777.CrossRefGoogle Scholar
Withiel, T. D., Sharp, V. L., Wong, D., Ponsford, J. L., Warren, N., & Stolwyk, R. J. (2018). Understanding the experience of compensatory and restorative memory rehabilitation: A qualitative study of stroke survivors. Neuropsychological Rehabilitation, 120. doi: 10.1080/09602011.2018.1479275 Google ScholarPubMed
Wong, D., Sinclair, K., Seabrook, E., McKay, A., & Ponsford, J. (2017). Smartphones as assistive technology following traumatic brain injury: A preliminary study of what helps and what hinders. Disability and Rehabilitation, 39(23), 23872394. doi: 10.1080/09638288.2016.1226434 CrossRefGoogle ScholarPubMed
Wong, D., Wang, Q. J., Stolwyk, R., & Ponsford, J. (2017). Do Smartphones have the potential to support cognition and independence following stroke? Brain Impairment, 111. doi: 10.1017/BrImp.2017.10 Google Scholar
Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica, 67(6), 361370.CrossRefGoogle ScholarPubMed