Hostname: page-component-6bf8c574d5-xtvcr Total loading time: 0 Render date: 2025-02-19T05:26:33.989Z Has data issue: false hasContentIssue false

Complementary fine-scale habitat selection of the European nightjars (Caprimulgus europaeus) in nesting and foraging sites

Published online by Cambridge University Press:  11 February 2025

Jean-Nicolas Pradervand*
Affiliation:
Swiss Ornithological Institute, Regional Office Valais, Sion, Valais, Switzerland
Julia Wildi
Affiliation:
Swiss Ornithological Institute, Sempach, Lucerne, Switzerland
Antoine Guisan
Affiliation:
University of Lausanne, Department of Ecology and Evolution (DEE) and Institute of Earth Surface Dynamics (IDYST), Lausanne, Vaud, Switzerland
Pius Korner
Affiliation:
Swiss Ornithological Institute, Sempach, Lucerne, Switzerland
Ruben Evens
Affiliation:
Université Catholique de Louvain (UCL), Earth & Life Institute | Terrestrial Ecology and Biodiversity Conservation Group, Croix du Sud 4-5, 1384 Louvain-la-Neuve Department of Ornithology, Max Planck Institute for Biological Intelligence, Eberhard-Gwinner-Straße, Germany
Alain Jacot
Affiliation:
Swiss Ornithological Institute, Regional Office Valais, Sion, Valais, Switzerland
*
Corresponding author: Jean-Nicolas Pradervand; Email: [email protected]

Summary

Land-use changes are considered one of the main drivers of biodiversity loss. Agricultural intensification, pastoral abandonment, and changes in forest management have led to the homogenisation of landscapes. In particular, the encroachment of grasslands and the densification of forests that are no longer pastured threaten species that require multiple habitats to nest and forage, such as the European Nightjar Caprimulgus europaeus. Whereas previous studies have focused on understanding factors influencing the decrease of nightjars at regional or national scales, here, we aimed to assess fine-scaled habitat selection by nightjars within nesting and foraging sites based on high-resolution GPS tracking data. Vegetation structure and composition were quantified in the field. In the nesting habitat, nightjars prefer open forests with a low percentage of trees and where the ground is not covered by more than 40% of grass and crawling bushes (dwarf bushes such as Juniperus species). In contrast, when foraging, nightjars select open grasslands and biodiversity-friendly managed vineyards, both richly structured, i.e. interspersed or surrounded by other land-use types such as hedges or isolated trees. Both the nesting and foraging habitats are currently threatened, either by the abandonment of forest management, which makes stands denser and more homogeneous, or through agricultural intensification, which reduces land-use diversity. Clear habitat-specific management recommendations and political incentives are needed to simultaneously preserve and/or restore these critical habitats, which are important for nightjars that use complementary resources for nesting and foraging.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aebischer, N.J., Robertson, P.A. and Kenward, R.E. (1993). Compositional analysis of habitat use from animal radio‐tracking data. Ecology 74, 13131325.CrossRefGoogle Scholar
Alexander, I. and Cresswell, B. (1990). Foraging by Nightjars Caprimulgus europaeus away from their nesting areas. Ibis 132(4), 568574. https://doi.org/10.1111/j.1474-919X.1990.tb00280.xCrossRefGoogle Scholar
Andrey, A., Humbert, J.-Y., Pernollet, C. and Arlettaz, R. (2014). Experimental evidence for the immediate impact of fertilization and irrigation upon the plant and invertebrate communities of mountain grasslands. Ecology and Evolution 4, 26102623.CrossRefGoogle ScholarPubMed
Assandri, G., Bogliani, G., Pedrini, P. and Brambilla, M. (2016). Diversity in the monotony? Habitat traits and management practices shape avian communities in intensive vineyards. Agriculture, Ecosystems and Environment 223, 250260.CrossRefGoogle Scholar
Baltensweiler, W. and Fischlin, A. (1988). The Larch Budmoth in the Alps. In Berryman, A. A. (ed.), Dynamics of Forest Insect Populations. Population Ecology . Boston: Springer, pp. 331351. https://doi.org/10.1007/978-1-4899-0789-9_17CrossRefGoogle Scholar
Barras, A.G., Marti, S., Ettlin, S., Vignali, S., Resano-Mayor, J., Braunisch, V. et al. (2020). The importance of seasonal environmental factors in the foraging habitat selection of Alpine Ring Ouzels Turdus torquatus alpestris. Ibis 162, 505519. https://doi.org/10.1111/IBI.12764CrossRefGoogle Scholar
Berry, R. (1979). Nightjar habitats and breeding in East Anglia. British Birds 72, 207218.Google Scholar
Bosco, L., Arlettaz, R. and Jacot, A. (2019a). Ground greening in vineyards promotes the Woodlark Lullula arborea and their invertebrate prey. Journal of Ornithology 160, 799811.CrossRefGoogle Scholar
Bosco, L., Wan, H.Y., Cushman, S.A., Arlettaz, R. and Jacot, A. (2019b). Separating the effects of habitat amount and fragmentation on invertebrate abundance using a multi-scale framework. Landscape Ecology 34, 105117.CrossRefGoogle Scholar
Braunisch, V., Roder, S., Coppes, J. and Bollmann, K. (2018). Structural complexity in managed and strictly protected mountain forests: Effects on the habitat suitability for indicator bird species. Forest Ecology and Management 448, 139149. https://doi.org/10.1016/jforeco.2019.06.007CrossRefGoogle Scholar
Bühler, R., Bosco, L., Arlettaz, R. and Jacot, A. (2017). Nest site preferences of the Woodlark (Lullula arborea) and its association with artificial nest predation. Acta Oecologica 78, 4146.CrossRefGoogle Scholar
Buttler, A., Gavazov, K., Peringer, A., Siehoff, S., Mariotte, P., Wettstein, J.-B. et al. (2012). Conservation des pâturages boisés du Jura: défis climatiques et agro-politiques. Recherche Agronomique Suisse 3, 346353.Google Scholar
Camacho, C. (2014). ‘Bodyguard’ plants: Predator–escape performance influences microhabitat choice by nightjars. Behavioural Processes 103, 145149.CrossRefGoogle ScholarPubMed
Delarze, R. and Gonseth, Y. (2008). Guide des Milieux Naturels de Suisse. Bussigny: Rossolis.Google Scholar
Demerdzhiev, D., Dobrev, D., Popgeorgiev, G. and Stoychev, S. (2022). Landscape alteration affects the demography of an endangered avian predator by reducing the habitat quality. Avian Research 13, 100030.CrossRefGoogle Scholar
English, P.A., Nocera, J.J. and Green, D.J. (2018). Nightjars may adjust breeding phenology to compensate for mismatches between moths and moonlight. Ecology and Evolution 8, 55155529.CrossRefGoogle ScholarPubMed
Evens, R., Beenaerts, N., Neyens, T., Witters, N., Smeets, K. and Artois, T. (2018a). Proximity of breeding and foraging areas affects foraging effort of a crepuscular, insectivorous bird. Scientific Reports 8, 3008.CrossRefGoogle ScholarPubMed
Evens, R., Beenaerts, N., Ulenaers, E., Witters, N. and Artois, T. (2018b). An effective, low-tech drop-off solution to facilitate the retrieval of data loggers in animal-tracking studies. Ringing and Migration 33, 1018.CrossRefGoogle Scholar
Evens, R., Conway, G., Franklin, K., Henderson, I., Stockdale, J., Beenaerts, N. et al. (2020). DNA diet profiles with high‐resolution animal tracking data reveal levels of prey selection relative to habitat choice in a crepuscular insectivorous bird. Ecology and Evolution 10, 1304413056.CrossRefGoogle Scholar
Evens, R., Jacot, A., Artois, T., Ulenaers, E., Neyens, T., Rappaz, L. et al. (2021). Improved ecological insights commission new conservation targets for a crepuscular bird species. Animal Conservation 24, 457469.CrossRefGoogle Scholar
Evens, R., Lathouwers, M., Pradervand, J.-N., Jechow, A., Kyba, C.C.M., Shatwell, T. et al. (2023). Skyglow relieves a crepuscular bird from visual constraints on being active. Science of The Total Environment 900, 165760.CrossRefGoogle ScholarPubMed
Goodrich, B., Gabry, J., Ali, I. and Brilleman, S. (2022). rstanarm: Bayesian Applied Regression Modeling via Stan. R package version 2.21.3. Available at https://mc-stan.org/rstanarm.Google Scholar
Gutierrez-Galan, A., Sanchez, A.L. and González, C.A. (2019). Foraging habitat requirements of European Turtle Dove Streptopelia turtur in a Mediterranean forest landscape. Acta Ornithologica 53, 143154.CrossRefGoogle Scholar
Horak, J., Vodka, S., Kout, J., Halda, J.P., Bogusch, P. and Pech, P. (2014). Biodiversity of most dead wood-dependent organisms in thermophilic temperate oak woodlands thrives on diversity of open landscape structures. Forest Ecology and Management 315, 8085.CrossRefGoogle Scholar
Humbert, J., Dwyer, J.M., Andrey, A. and Arlettaz, R. (2016). Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: a systematic review. Global Change Biology 22, 110120.CrossRefGoogle ScholarPubMed
Humbert, J.-Y., Delley, S. and Arlettaz, R. (2021). Grassland intensification dramatically impacts grasshoppers: Experimental evidence for direct and indirect effects of fertilisation and irrigation. Agriculture, Ecosystems and Environment 314, 107412.CrossRefGoogle Scholar
Kassambara, A. and Mundt, F. (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. Available at https://CRAN.R-project.org/package=factoextra.Google Scholar
Keller, V., Herrando, S., Voříšek, P., Franch, M., Kipson, M., Milanesi, P. et al. (2020). European Breeding Bird Atlas 2 Distribution, Abundance and Change. Barcelona: European Bird Census Council/Lynx Edicions.Google Scholar
Knaus, P., Antoniazza, S., Keller, V., Sattler, T., Schmid, H. and Strebel, N. (2021). Liste Rouge des Oiseaux Nicheurs. Espèces Menacées en Suisse. L’Environnement Pratique 2124. Berne: Office Fédéral de l’Environnement (OFEV)/Station Ornithologique Suisse.Google Scholar
Knaus, P., Antoniazza, S., Wechsler, S., Guélat, J., Kéry, M., Strebel, N. et al. (2018). Swiss Breeding Bird Atlas 2013–2016 . Distribution and Population Trends of Birds in Switzerland and Liechtenstein. Sempach: Swiss Ornithological Institute.Google Scholar
Langston, R.H.W., Liley, D., Murison, G., Woodfield, E. and Clarke, R.T. (2007). What effects do walkers and dogs have on the distribution and productivity of breeding European Nightjar Caprimulgus europaeus? Ibis 149, 2736.CrossRefGoogle Scholar
Lathouwers, M., Dendoncker, N., Artois, T., Beenaerts, N., Conway, G., Henderson, I. et al. (2023). Multi-scale habitat selection throughout the annual cycle of a long-distance avian migrant. Ecological Indicators 156, 111099. https://doi.org/10.1016/J.ECOLIND.2023.111099CrossRefGoogle Scholar
Lindell, C.A., Riffell, S.K., Kaiser, S.A., Battin, A.L., Smith, M.L. and Sisk, T.D. (2007). Edge responses of tropical and temperate birds. The Wilson Journal of Ornithology 119, 205220.CrossRefGoogle Scholar
MacDonald, D., Crabtree, J.R., Wiesinger, G., Dax, T., Stamou, N., Fleury, P. et al. (2000). Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. Journal of Environmental Management 59, 4769. https://doi.org/10.1006/JEMA.1999.0335CrossRefGoogle Scholar
MeteoSuisse (2021). Normes Climatologiques 1981–2010: Précipitations. Available at www.meteosuisse.ch.Google Scholar
Miklín, J. and Čížek, L. (2014). Erasing a European biodiversity hot-spot: open woodlands, veteran trees and mature forests succumb to forestry intensification, succession, and logging in a UNESCO Biosphere Reserve. Journal for Nature Conservation 22, 3541.CrossRefGoogle Scholar
Mitchell, L.J., Kohler, T., White, P.C.L. and Arnold, K.E. (2020). High interindividual variability in habitat selection and functional habitat relationships in European nightjars over a period of habitat change. Ecology and Evolution 10, 59325945.CrossRefGoogle Scholar
Pellissier, L., Anzini, M., Maiorano, L., Dubuis, A., Pottier, J., Vittoz, P. et al. (2013). Spatial predictions of land‐use transitions and associated threats to biodiversity: the case of forest regrowth in mountain grasslands. Applied Vegetation Science 16, 227236.CrossRefGoogle Scholar
R Core Team (2024). _R: A Language and Environment for Statistical Computing_. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.Google Scholar
Rey, L., Kéry, M., Sierro, A., Posse, B., Arlettaz, R. and Jacot, A. (2019). Effects of forest wildfire on inner-Alpine bird community dynamics. PLOS ONE 14, e0214644.CrossRefGoogle ScholarPubMed
Reynard, E., Arlettaz Jori, S., Bessero, V. and Martin, S. (2007). Analyse cartographique de l’évolution du vignoble valaisan depuis 1880. Vallesia LXII, 261296.Google Scholar
Robinson, R.A. and Sutherland, W.J. (2002). Post-war changes in arable farming and biodiversity in Great Britain. Journal of Applied Ecology 39, 157176.CrossRefGoogle Scholar
Roughgarden, J. (1972). Evolution of niche width. The American Naturalist 106, 683718.CrossRefGoogle Scholar
Rounsevell, M., Fischer, M., Torre‐Marin Rando, A. and Mader, A. (2018). The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia. Bonn: IPBES Secretariat.Google Scholar
Schaub, M., Martinez, N., Tagmann-Ioset, A., Weisshaupt, N., Maurer, M.L., Reichlin, T.S. et al. (2010). Patches of bare ground as a staple commodity for declining ground-foraging insectivorous farmland birds. PLOS ONE 5, e13115.CrossRefGoogle ScholarPubMed
Sharps, K., Henderson, I., Conway, G., Armour-Chelu, N. and Dolman, P.M. (2015). Home-range size and habitat use of European Nightjars Caprimulgus europaeus nesting in a complex plantation-forest landscape. Ibis 157, 260272.CrossRefGoogle Scholar
Sierro, A., Arlettaz, R., Naef-Daenzer, B., Strebel, S. and Zbinden, N. (2001). Habitat use and foraging ecology of the nightjar (Caprimulgus europaeus) in the Swiss Alps: towards a conservation scheme. Biological Conservation 98, 325331.CrossRefGoogle Scholar
Sierro, A. and Erhardt, A. (2019). Light pollution hampers recolonization of revitalised European Nightjar habitats in the Valais (Swiss Alps). Journal of Ornithology 160, 749761.CrossRefGoogle Scholar
Verstraeten, G., Baeten, L. and Verheyen, K. (2011). Habitat preferences of European Nightjars Caprimulgus europaeus in forests on sandy soils. Bird Study 58, 120129.CrossRefGoogle Scholar
Wagner, D.L., Grames, E.M., Forister, M.L., Berenbaum, M.R. and Stopak, D. (2021). Insect decline in the Anthropocene: Death by a thousand cuts. Proceedings of the National Academy of Sciences– PNAS 118, e2023989118.CrossRefGoogle ScholarPubMed
Wasserlauf, Y., Gancz, A., ben Dov, A., Efrat, R., Sapir, N., Dor, R. et al. (2023). A telemetry study shows that an endangered nocturnal avian species roosts in extremely dry habitats to avoid predation. Scientific Reports 13, 11888. https://doi.org/10.1038/s41598-023-38981-2CrossRefGoogle ScholarPubMed
Wichmann, G. (2004). Habitat use of nightjar (Caprimulgus europaeus) in an Austrian pine forest. Journal of Ornithology 145, 6973.CrossRefGoogle Scholar
Winiger, N., Korner, P., Arlettaz, R. and Jacot, A. (2018). Vegetation structure and decreased moth abundance limit the recolonisation of restored habitat by the European Nightjar. Rethinking Ecology 3, 2539.CrossRefGoogle Scholar
Zaccarelli, N., Bolnick, D.I. and Mancinelli, G. (2013). RInSp: an R package for the analysis of individual specialization in resource use. Methods in Ecology and Evolution 4, 10181023. https://doi.org/10.1111/2041-210X.12079CrossRefGoogle Scholar
Supplementary material: File

Pradervand et al. supplementary material

Pradervand et al. supplementary material
Download Pradervand et al. supplementary material(File)
File 3.7 MB