Hostname: page-component-669899f699-qzcqf Total loading time: 0 Render date: 2025-04-24T12:50:58.511Z Has data issue: false hasContentIssue false

A review of the ecology and conservation of the Andean Flamingo Phoenicoparrus andinus and Puna Flamingo P. jamesi in South America

Published online by Cambridge University Press:  28 November 2024

Enrique J. Derlindati
Affiliation:
Biología de la Conservación, Facultad de Ciencias Naturales, Universidad Nacional de Salta (UNSa), 4400 Salta, Argentina Grupo de Conservación Flamencos Altoandinos (GCFA)
Felicity Arengo
Affiliation:
Grupo de Conservación Flamencos Altoandinos (GCFA) Center for Biodiversity and Conservation, American Museum of Natural History, New York, USA
Matías Michelutti
Affiliation:
Grupo de Conservación Flamencos Altoandinos (GCFA) Tucumán 276, X5143 Miramar, Córdoba, Argentina
Marcelo C. Romano
Affiliation:
Grupo de Conservación Flamencos Altoandinos (GCFA) Centro de Investigaciones en Biodiversidad y Ambiente (ECOSUR), 2000 Rosario, Argentina
Heber Sosa Fabre
Affiliation:
Grupo de Conservación Flamencos Altoandinos (GCFA) Fundación para el Estudio en Intervención Socioambiental (FEISA), Godoy Cruz 5501, Mendoza, Argentina
Enver Ortiz
Affiliation:
Grupo de Conservación Flamencos Altoandinos (GCFA) Centro de Ornitología y Biodiversidad (CORBIDI), Huertos de San Antonio, Surco, Lima 33, Peru
Omar Rocha
Affiliation:
Grupo de Conservación Flamencos Altoandinos (GCFA) BioparqueMunicipal Vesty Pakos, La Paz, Bolivia
Alex E. Jahn
Affiliation:
Department of Biology, Indiana University, Bloomington, USA
Mariana M. Chanampa
Affiliation:
Cátedra de Epistemología y Metodología de la Ciencia, Facultad de Ciencias Naturales, Universidad Nacional de Salta (UNSa), 4400 Salta, Argentina
Ignacio M. Barberis*
Affiliation:
Grupo de Conservación Flamencos Altoandinos (GCFA) Instituto de Investigaciones en Ciencias Agrarias de Rosario, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Zavalla, Argentina
*
Corresponding author: Ignacio M. Barberis; Email: [email protected]

Summary

There are six species of flamingos in the world, all under pressure from human activities in their wetland habitats. Obtaining global population estimates for flamingos is challenging because of their broad geographical range, nomadic movements, capacity for long-distance flight, and the complexity of international monitoring. Two species, the Andean Flamingo Phoenicoparrus andinus and Puna Flamingo P. jamesi, during key parts of their life cycle, use wetlands in the Andes of South America, where they coexist at various sites. We compiled historical information on population estimates and ecology for these two species and integrated data collected on regional simultaneous censuses to describe population trends, current and emerging threats, and provide recommendations for conservation action. Long-term population trends have been difficult to establish given the unreliability of population estimates prior to the late 1990s. Systematic, regional censuses carried out regularly since 1997 have produced robust population estimates for the Andean and Puna flamingos (most recently, 78,000 and 154,000, respectively) and show populations of both species to be stable and increasing. Increasingly rapid changes in wetlands caused by human activities such as industrial-scale mining in breeding and foraging sites in the high Andes wetlands, and agro-industrial activities in their lowland wintering sites, focused on areas of the highest concentrations of flamingos pose threats to their survival and ability to reproduce. In addition, climate change is projected to reduce wetland habitats and some localised effects have already been detected. Continued research on the ecological drivers of flamingo abundance, movements, and population genetics to understand population structure and dynamics are necessary, as well as the identification of response variables to changing environmental conditions. Interdisciplinary and systems-level approaches in the context of international collaboration in monitoring and conservation planning among a diversity of stakeholders will be required to safeguard flamingo populations and wetland habitats.

Type
Review Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Allen, R. (1956). The Flamingos: Their Life History and Survival. New York: National Audubon Society.Google Scholar
Anderson, M.J. (2017). Flamingos: Behavior, Biology, and Relationship with Humans. New York: Nova Science Publishers.Google Scholar
Baldassarre, G.A. and Arengo, F. (2000). A review of the ecology and conservation of Caribbean Flamingos in Yucatán, Mexico. Waterbirds 23(Special Publication 1), 7079. https://doi.org/10.2307/1522149CrossRefGoogle Scholar
Balkiz, Ö., Özesmi, U., Pradel, R., Germain, C., Siki, M., Amat, J.A. et al. (2007). Range of the Greater Flamingo, Phoenicopterus roseus, metapopulation in the Mediterranean: new insights from Turkey. Journal of Ornithology 148, 347355. https://doi.org/10.1007/s10336-007-0136-2CrossRefGoogle Scholar
Bay, R.A., Harrigan, R.J., Underwood, V.L., Gibbs, H.L., Smith, T.B. and Ruegg, K. (2018). Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 8386. https://doi.org/10.1126/science.aan4380CrossRefGoogle Scholar
Béchet, A. (2017). Flight, navigation, dispersal, and migratory behavior. In Anderson, M. (ed.), Flamingos: Behavior, Biology, and Relationship with Humans. New York: Nova Publishers, pp. 97106.Google Scholar
Behn, F., Johnson, A. and Millie, G. (1957). Expedición ornitológica a las cordilleras del norte de Chile. Boletín de la Sociedad de Biología de Concepción 32, 95131.Google Scholar
BirdLife International (2012). IUCN Red List. Available at http://www.birdlife.org.Google Scholar
Boucheker, A., Samraoui, B., Prodon, R., Amat, J.A., Rendón-Martos, M., Baccetti, N. et al. (2011). Connectivity between the Algerian population of Greater Flamingo Phoenicopterus roseus and those of the Mediterranean basin. Ostrich 82, 167174. https://doi.org/10.2989/00306525.2011.607856CrossRefGoogle Scholar
Boyle, T.P., Caziani, S.M. and Waltermire, R.G. (2004). Landsat TM inventory and assessment of waterbird habitat in the southern altiplano of South America. Wetlands Ecology and Management 12, 563573. https://doi.org/10.1007/s11273-005-1761-2CrossRefGoogle Scholar
Brandolin, P.G., Ávalos, M.A. and de Angelo, C. (2013). The impact of flood control on the loss of wetlands in Argentina. Aquatic Conservation: Marine and Freshwater Ecosystems 23, 291300. https://doi.org/10.1002/aqc.2305CrossRefGoogle Scholar
Bucher, E.H. (1992). Population and conservation status of flamingos in Mar Chiquita, Córdoba, Argentina. Colonial Waterbirds 15, 179184. https://www.jstor.org/stable/1521451CrossRefGoogle Scholar
Bucher, E.H., Chani, J.M. and Echevarría, A.L. (2000). Andean flamingos breeding at Laguna Brava, La Rioja, Argentina. Waterbirds 23(Special Publication 1), 119120.CrossRefGoogle Scholar
Bucher, E.H. and Curto, E. (2012). Influence of long-term climatic changes on breeding of the Chilean flamingo in Mar Chiquita, Córdoba, Argentina. Hydrobiologia 697, 127137. https://doi.org/10.1007/s10750-012-1176-zCrossRefGoogle Scholar
Cabaña, I., Steffolani, M.L., Lassaga, V., Michelutti, M., Michelutti, P. and Castro, L.B. (2018). Censo aéreo de flamencos en la laguna Mar Chiquita y bañados del Río Dulce, Córdoba, Argentina, en verano e invierno del año 2018. Flamingo e1, 4853.Google Scholar
Canevari, P., Blanco, D.E., Bucher, E.H., Castro, G. and Davidson, I. (1999). Los Humedales de la Argentina. Clasificación, Situación Actual, Conservación y Legislación. Buenos Aires: Wetlands International.Google Scholar
Castro, L. and Torres, R. (2014). Foraging behavior, direct interference and habitat use in three species of flamingos (Phoenicopterus chilensis, Phoenicoparrus andinus and Phoenicoparrus jamesi) in Mar Chiquita Lagoon, Córdoba, Argentina. Acta Geologica Sinica 88, 6364. https://doi.org/10.1111/1755-6724.12266_9CrossRefGoogle Scholar
Caziani, S.M. and Derlindati, E. (2000). Abundance and habitat of High Andes flamingos in Northwestern Argentina. Waterbirds 23, 121133. https://www.jstor.org/stable/1522157CrossRefGoogle Scholar
Caziani, S., Rocha Olivio, O., Rodríguez Ramírez, E., Romano, M., Derlindati, E.J., Tálamo, A. et al. (2007). Seasonal distribution, abundance, and nesting of Puna, Andean, and Chilean Flamingos. The Condor 109, 276287. https://doi.org/10.1093/condor/109.2.276CrossRefGoogle Scholar
Childress, B. (2005). Flamingo population estimates for Africa and Southern Asia. Flamingo 13, 1821.Google Scholar
Cobos, V., Miatello, R. and Baldo, J. (1999). Algunas especies de aves nuevas y otras con pocos registros para la provincia de Córdoba, Argentina. II. Nuestras Aves 39, 711.Google Scholar
Cohen, E.B., Hostetler, J.A., Hallworth, M.T., Rushing, C.S., Sillett, T.S. and Marra, P.P. (2018). Quantifying the strength of migratory connectivity. Methods in Ecology and Evolution 9, 513524. https://doi.org/10.1111/2041-210X.12916CrossRefGoogle Scholar
Cordier, C. (1965). Op zoek naar flamingo’s in de Andes. Zoo Antwerp 30, 8388.Google Scholar
Cortés-Avizanda, A., Almaraz, P., Carrete, M., Sánchez-Zapata, J.A., Delgado, A., Hiraldo, F. et al. (2011). Spatial heterogeneity in resource distribution promotes facultative sociality in two trans-Saharan migratory birds. PLOS ONE 6. https://doi.org/10.1371/journal.pone.0021016CrossRefGoogle ScholarPubMed
Cruz, N.N., Barisón, C., Romano, M., Arengo, F., Derlindati, E.J. and Barberis, I. (2013). A new record of James’s Flamingo (Phoenicoparrus jamesi) from Laguna Melincué, a lowland wetland in East-Central Argentina. The Wilson Journal of Ornithology 125, 217221. https://doi.org/10.1676/12-111.1CrossRefGoogle Scholar
de la Fuente, A., Meruane, C. and Suárez, F. (2021). Long-term spatiotemporal variability in high Andean wetlands in northern Chile. Science of the Total Environment 756, 143830. https://doi.org/10.1016/j.scitotenv.2020.143830CrossRefGoogle ScholarPubMed
Delfino, H.C. (2023). A fragile future for pink birds: habitat suitability models predict a high impact of climate change on the future distribution of flamingos. Emu – Austral Ornithology 123, 310324. https://doi.org/10.1080/01584197.2023.2257757CrossRefGoogle Scholar
Delfino, H.C. and Carlos, C.J. (2024). Still standing on one leg: a systematic review of threats, priorities, and conservation perspectives for flamingos (Phoenicopteridae). Biodiversity and Conservation 33, 12271268. https://doi.org/10.1007/s10531-024-02816-xCrossRefGoogle Scholar
De los Rios-Escalante, P.R., Esse, C., Correa-Araneda, F., Rodríguez, L., Fernández, C.E. and Prado, P.E. (2024). Potential effects of climate change in saline shallow lakes in the North of Chile (Salar de Atacama, 23° S, Chile) and South Lipez of Bolivia (Khalina Lake, 22.61° S). In Singh, A.L., Jamal, S. and Ahmad, W.S. (eds), Climate Change, Vulnerabilities and Adaptation: Understanding and Addressing Threats with Insights for Policy and Practice. Cham: Springer, pp. 171182.CrossRefGoogle Scholar
Derlindati, E.J., Moschione, F.N. and Cruz, N.N. (2010). Nuevas colonias de nidificación de la parina chica (Phoenicoparrus jamesi) en el noroeste de la Argentina. Nótulas Faunisticas 56, 15.Google Scholar
Derlindati, E.J., Romano, M.C., Cruz, N.N., Barisón, C., Arengo, F. and Barberis, I.M. (2014). Seasonal activity patterns and abundance of Andean Flamingo (Phoenicoparrus andinus) at two contrasting wetlands in Argentina. Ornitologia Neotropical 25, 317331.Google Scholar
Dias, R.A. and Cardozo, J.B. (2014). First record of the Puna Flamingo Phoenicoparrus jamesi (Sclater, 1886) (Aves: Phoenicopteridae) for the Atlantic coast of South America. Check List 10, 11501151. https://doi.org/10.15560/10.5.1150CrossRefGoogle Scholar
Dib, J.R., Weiss, A., Neumann, A., Ordoñez, O., Estévez, M.C. and Farías, M.E. (2009). Isolation of bacteria from remote High Altitude Andean Lakes able to grow in the presence of antibiotics. Recent Patents on Anti-Infective Drug Discovery 4, 6676. https://doi.org/10.2174/157489109787236300CrossRefGoogle ScholarPubMed
European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control (ECDC), European Union Reference Laboratory for Avian Influenza (EURL), Adlhoch, C., Fusaro, A., Gonzales, J.L. et al. (2023). Scientific report: Avian influenza overview September–December 2023. EFSA Journal 21, e8539. https://doi.org/10.2903/j.efsa.2023.8539Google Scholar
Fjeldså, J. and Krabbe, N. (1990). Birds of the High Andes: A Manual to the Birds of the Temperate Zone of the Andes and Patagonia, South America. Copenhagen: Zoological Museum.Google Scholar
Frau, D., Battauz, Y., Mayora, G. and Marconi, P. (2015). Controlling factors in planktonic communities over a salinity gradient in high-altitude lakes. Annales de Limnologie–International Journal of Limnology 51, 261272. https://doi.org/10.1051/limn/2015020Google Scholar
Frau, D., Moran, B.J., Arengo, F., Marconi, P., Battauz, Y., Mora, C. et al. (2021). Hydroclimatological patterns and limnological characteristics of unique wetland systems on the Argentine High Andean plateau. Hydrology 8, 164. https://doi.org/10.3390/hydrology8040164CrossRefGoogle Scholar
Gajardo, G. and Redón, S. (2019). Andean hypersaline lakes in the Atacama Desert, northern Chile: Between lithium exploitation and unique biodiversity conservation. Conservation Science and Practice 1, 18. https://doi.org/10.1111/csp2.94CrossRefGoogle Scholar
Gálvez Aguilera, X. and Chávez-Ramírez, F. (2010). Distribution, abundance, and status of Cuban Sandhill Cranes (Grus canadensis nesiotes). The Wilson Journal of Ornithology 122, 556562. https://doi.org/10.1676/09-174.1CrossRefGoogle Scholar
Garcés, I. and Álvarez, G. (2020). Water mining and extractivism of the Salar de Atacama, Chile. In Casares, J. (ed.), Environmental Impact V. Southampton: WIT Press, pp. 189199.CrossRefGoogle Scholar
Guerra, L., Martini, M.A., Córdoba, F.E., Ariztegui, D. and Piovano, E.L. (2019). Multi-annual response of a Pampean shallow lake from central Argentina to regional and large-scale climate forcings. Climate Dynamics 52, 68476861. https://doi.org/10.1007/s00382-018-4548-xCrossRefGoogle Scholar
Guevara, E.A., Santander, T., Espinosa, R. and Graham, C.H. (2021). Aquatic bird communities in Andean lakes of Ecuador are increasingly dissimilar over time. Ecological Indicators 121, 107044. https://doi.org/10.1016/j.ecolind.2020.107044CrossRefGoogle Scholar
Gutiérrez, J.S., Moore, J.N., Donnelly, J.P., Dorador, C., Navedo, J.G. and Senner, N.R. (2022). Climate change and lithium mining influence flamingo abundance in the Lithium Triangle. Proceedings of the Royal Society B. Biological Sciences 289, 20212388. https://doi.org/10.1098/rspb.2021.2388CrossRefGoogle ScholarPubMed
Hostetler, J.A., Sillett, T.S. and Marra, P.P. (2015). Full-annual-cycle population models for migratory birds. The Auk 132, 433449. https://doi.org/10.1642/AUK-14-211.1CrossRefGoogle Scholar
Hughes, R.A. (1980). Midwinter breeding by some birds in the High Andean of Southern Perú. The Condor 82, 229231.CrossRefGoogle Scholar
Hurlbert, S.H. (1978). Results of Five Flamingo Censuses Conducted Between November 1975 and December 1977. Andean Lake and Flamingo Investigations, Technical Report No. 1. San Diego: San Diego State University.Google Scholar
Hurlbert, S.H. (1981). Results of Three Flamingo Censuses Conducted Between December 1978 and July 1980. Andean Lake and Flamingo Investigations, Technical Report No. 2. San Diego: San Diego State University.Google Scholar
Hurlbert, S.H. (1982). Limnological studies of flamingo investigations and distributions. National Geographic Research Reports 14, 351356.Google Scholar
Hurlbert, S.H. and Chang, C.C.Y. (1983). Ornitholimnology: Effects of grazing by the Andean Flamingo (Phoenicoparrus andinus). Proceedings of the National Academy of Sciences – PNAS 80, 47664769. https://doi.org/10.1073/pnas.80.15.4766CrossRefGoogle ScholarPubMed
Hurlbert, S.H. and Keith, J.O. (1979). Distribution and spatial patterning of flamingos in the Andean Altiplano. The Auk 96, 328342. https://digitalcommons.usf.edu/auk/vol96/iss2/10Google Scholar
International Union for Conservation of Nature (IUCN). (2023). The IUCN Red List of Threatened Species. Version 2022-2. Available at https://www.iucnredlist.org.Google Scholar
Jahn, A.E., Cereghetti, J., Hallworth, M.T., Ketterson, E.D., Ryder, B., Marra, P.P. et al. (2023). Highly variable movements by Andean Flamingos (Phoenicoparrus andinus): implications for conservation and management. Avian Conservation & Ecology 18, 13. https://doi.org/10.5751/ACE-02521-180213CrossRefGoogle Scholar
Jahn, A.E., Cueto, V.R., Fontana, C.S., Guaraldo, A.C., Levey, D.J., Marra, P.P. et al. (2020). Bird migration within the Neotropics. The Auk 137, 123. https://doi.org/10.1093/auk/ukaa033CrossRefGoogle Scholar
Johnson, A.W. (1967). Family Phoenicopteridae. In Johnson, A.W. The Birds of Chile and Adjacent Regions of Argentina , Bolivia and Peru: vol. II. Buenos Aires: Platt Establecimientos Gráficos, pp. 404406.Google Scholar
Johnson, A.W., Behn, F. and Millie, W.R. (1958). The South American flamingos. The Condor 60, 289299. https://doi.org/10.2307/1365154CrossRefGoogle Scholar
Kahl, M.P. (1975). Distribution and number – a summary. In Kear, J. and Duplaix-Hall, K. (eds), Flamingos. London: Bloomsbury Publishing, pp. 93102.Google Scholar
Knight, E.C., Harrison, A.L., Scarpignato, A.L., Van Wilgenburg, S.L., Bayne, E.M., Ng, J.W. et al. (2021). Comprehensive estimation of spatial and temporal migratory connectivity across the annual cycle to direct conservation efforts. Ecography 44, 665679. https://doi.org/10.1111/ecog.05111CrossRefGoogle Scholar
Krienitz, L. (2018). Lesser Flamingos: Descendants of Phoenix. Berlin: Springer.CrossRefGoogle Scholar
La Sorte, F.A. and Jetz, W. (2012). Tracking of climatic niche boundaries under recent climate change. Journal of Animal Ecology 81, 914925. https://doi.org/10.1111/j.1365-2656.2012.01958.xCrossRefGoogle ScholarPubMed
Lagos, N., Villalobos, R., Vianna, J.A., Espinosa-Miranda, C., Rau, J.R. and Iriarte, A. (2023). The spatial and trophic ecology of culpeo foxes (Lycalopex culpaeus) in the high Andes of northern Chile. Studies on Neotropical Fauna and Environment 58, 564573. https://doi.org/10.1080/01650521.2021.2005393CrossRefGoogle Scholar
Latta, S.C., Rimmer, C.C. and McFarland, K.P. (2003). Winter bird communities in four habitats along an elevational gradient on Hispaniola. The Condor 105, 179197. https://doi.org/10.1093/condor/105.2.179CrossRefGoogle Scholar
Li, Z., Wang, Z. and Ge, C. (2013). Time budgets of wintering red-crowned cranes: effects of habitat, age and family size. Wetlands 33, 227232. https://doi.org/10.1007/s13157-012-0371-zCrossRefGoogle Scholar
Liu, W., Agusdinata, D.B. and Myint, S.W. (2019). Spatiotemporal patterns of lithium mining and environmental degradation in the Atacama Salt Flat, Chile. International Journal of Applied Earth Observation and Geoinformation 80, 145156. https://doi.org/10.1016/j.jag.2019.04.016CrossRefGoogle Scholar
Marconi, P. (2010). Proyecto Red de Humedales Altoandinos y Ecosistemas Asociados, Basada en la Distribución de las Dos Especies de Flamencos Altoandinos. Salta: Fundación Yuchán.Google Scholar
Marconi, P., Arengo, F., Castro, A., Rocha, O., Valqui, M., Aguilar, S. et al. (2020). Sixth International Simultaneous Census of three flamingo species in the Southern Cone of South America: Preliminary analysis. Flamingo e3, 6775.Google Scholar
Marconi, P., Arengo, F. and Clark, A. (2022). The arid Andean plateau waterscapes and the lithium triangle: flamingos as flagships for conservation of high-altitude wetlands under pressure from mining development. Wetlands Ecology and Management 30, 827852. https://doi.org/10.1007/s11273-022-09872-6CrossRefGoogle Scholar
Marconi, P.M. and Clark, R. (2011). First confirmed nesting record of Andean Flamingo Phoenicoparrus andinus in Catamarca, Argentina, and remarks on its breeding ecology. Cotinga 33, 150151.Google Scholar
Marconi, P.M. and Sureda, A.L. (2008). High Andean Flamingo Wetland Network: Evaluation of degree of implementation of priority sites-preliminary results. Flamingo 16, 3640.Google Scholar
Marconi, P.M., Sureda, A.L., Arengo, F., Aguilar, M.S., Amado, N., Alza, L. et al. (2011). Fourth simultaneous flamingo census in South America: preliminary results. Flamingo 18, 4853.Google Scholar
Marconi, P.M., Sureda, A.L., Rocha Olivio, O., Rodríguez Ramírez, E., Derlindati, E., Romano, M.C. et al. (2007). Network of important wetlands for flamingo conservation: Preliminary results from 2007 monitoring at priority sites. Flamingo 15, 1720.Google Scholar
Marra, P.P., Cohen, E.B., Loss, S.R., Rutter, J.E. and Tonra, C.M. (2015). A call for full annual cycle research in animal ecology. Biology Letters 11, 20150552. https://doi.org/10.1098/rsbl.2015.0552CrossRefGoogle Scholar
Mascitti, V. (1998). James Flamingo foraging behavior in Argentina. Colonial Waterbirds 21, 277280. https://doi.org/10.2307/1521921CrossRefGoogle Scholar
Mascitti, V. (2001). Habitat changes in Laguna de Pozuelos, Jujuy, Argentina: Implications for South American Flamingo populations. Waterbirds 24, 1621. https://doi.org/10.2307/1522238CrossRefGoogle Scholar
Mascitti, V. and Bonaventura, S.M. (2002). Patterns of abundance, distribution and habitat use of flamingos in the High Andes, South America. Waterbirds 25, 358365. https://www.jstor.org/stable/1521978CrossRefGoogle Scholar
Mascitti, V. and Kravetz, F.O. (2002). Bill morphology of South American flamingos. The Condor 104, 7383. https://doi.org/10.1093/condor/104.1.73CrossRefGoogle Scholar
McMillan, D.J. (1972). The Phoenix in the Western world from Herodotus to Shakespeare. The D.H. Lawrence Review 5, 238267. https://www.jstor.org/stable/44233403.Google Scholar
Moran, B.J., Boutt, D.F., Munk, L.A. and Fisher, J.D. (2024). Contemporary and relic waters strongly decoupled in arid alpine environments. PLOS Water 3, e0000191. https://doi.org/10.1371/journal.pwat.0000274CrossRefGoogle Scholar
Moschione, F. and Sureda, A. (2008). Monitoring high-Andes flamingos at Laguna de los Pozuelos National Monument, Argentina: preliminary results. Flamingo 16, 4850.Google Scholar
Nanni, A.S., Piquer Rodríguez, M., Rodríguez, D., Núñez Regueiro, M., Periago, M.E., Aguiar, S. et al. (2020). Presiones sobre la conservación asociadas al uso de la tierra en las ecorregiones terrestres de la Argentina. Ecología Austral 30, 304320. https://doi.org/10.25260/EA.20.30.2.0.1056CrossRefGoogle Scholar
Ortiz, E., Gamboa, M., Salas, M. and Vera, J. (2020). Ítems alimenticios potenciales para la parina grande (Phoenicoparrus andinus, (Philippi, 1854)) en dos tipos de hábitats acuáticos de la laguna de Parinacochas, Ayacucho, Perú. Biotempo 17, 311320. https://doi.org/10.31381/biotempo.v17i2.3400CrossRefGoogle Scholar
Parada, M. (1990). Flamencos en el Norte de Chile, distribución, abundancia y fluctuaciones estacionales del número. In Parada, M., Rottmann, J. and Guerra, C. (eds), I Taller Internacional de Especialistas en Flamencos Sudamericanos. San Pedro de Atacama: Corporación Nacional Forestal y Sociedad Zoológica de Nueva York, pp. 5466.Google Scholar
Peña, L.E. (1962). Notes on South American flamingos. Postilla 69, 18.Google Scholar
Petavratzi, E., Sánchez-López, D., Hughes, A., Stacey, J., Ford, J. and Butcher, A. (2022). The impacts of environmental, social and governance (ESG) issues in achieving sustainable lithium supply in the Lithium Triangle. Mineral Economics 35, 673699. https://doi.org/10.1007/s13563-022-00332-4CrossRefGoogle Scholar
Polla, W.M., Di Pasquale, V., Rasuk, M.C., Barberis, I., Romano, M., Manzo, R. et al. (2018). Diet and feeding selectivity of the Andean Flamingo Phoenicoparrus andinus and Chilean Flamingo Phoenicopterus chilensis in lowland wintering areas. Wildfowl Journal 68, 329.Google Scholar
Quiroga, O.B. and Llugdar, J.E. (2022). Primer registro documentado de la Parina Chica (Phoenicoparrus jamesi, Phoenicopteriformes: Phoenicopteridae) en Santiago del Estero, Argentina. Acta Zoologica Lilloana 66, 7178. https://doi.org/10.30550/j.azl/2022.66.1/2022-05-24CrossRefGoogle Scholar
Rendón, M.A., Garrido, A., Ramírez, J.M., Rendón-Martos, M. and Amat, J.A. (2001). Despotic establishment of breeding colonies of greater flamingos, Phoenicopterus ruber, in southern Spain. Behavioral Ecology and Sociobiology 50, 5560. https://doi.org/10.1007/s002650100326Google Scholar
Rocha, O. (1997). Fluctuaciones poblacionales de tres especies de flamencos en Laguna Colorada. Revista Boliviana de Ecología 2, 6776.Google Scholar
Rocha, O., Aguilar, S., Vargas, M. and Quiroga, C. (2009). Abundancia, reproducción y anillado de Flamencos Andinos (Phoenicoparrus jamesi y P. andinus) en Laguna Colorada, Potosí – Bolivia. Flamingo 17, 1621.Google Scholar
Rocha, O., Pacheco, L.F., Ayala, G.R., Varela, F. and Arengo, F. (2021). Trace metals and metalloids in Andean flamingos (Phoenicoparrus andinus) and Puna flamingos (P. jamesi) at two wetlands with different risk of exposure in the Bolivian Altiplano. Environmental Monitoring and Assessment 193, 535. https://doi.org/10.1007/s10661-021-09340-3CrossRefGoogle ScholarPubMed
Rocha, O. and Quiroga, C. (1997). Primer Censo Simultáneo Internacional de los flamencos Phoenicoparrus jamesi y Phoenicoparrus andinus en Argentina, Bolivia, Chile y Perú, con especial referencia y análisis al caso boliviano. Ecología en Bolivia 30, 3342.Google Scholar
Rodríguez, E. (2006). Flamencos Altoandinos Phoenicopterus andinus (Philippi, 1854), Phoenicopterus jamesi (Sclater, 1886) y Phoenicopterus chilensis (Molina, 1782), en el Norte de Chile: Estado Actual y Plan de Conservación. Antofagasta: Corporación Nacional Forestal (CONAF).Google Scholar
Romano, M., Barberis, I., Arengo, F., Caselli, A., Minotti, P., Morandeira, N. et al. (2011). Seasonal variation of Andean and Chilean Flamingos in lowland wetlands of central Argentina. Flamingo 18, 1213.Google Scholar
Romano, M., Barberis, I.M., Derlindati, E., Pagano, F., Marconi, P.M. and Arengo, F. (2009). Variation in abundance of Andean and Chilean Flamingos wintering in lowland wetlands of central Argentina in two contrasting years. Flamingo 17, 1116.Google Scholar
Romano, M.C., Barberis, I.M., Guerra, L., Piovano, E.L. and Minotti, P. (2014). Sitio Ramsar Humedal Laguna Melincué: Estado de situación. Santa Fe: Secretaría de Medio Ambiente de la provincia de Santa Fe.Google Scholar
Romano, M.C., Barberis, I.M., Pagano, F. and Maidagan, J. (2005). Seasonal and interannual variation in waterbird abundance and species composition in the Melincué saline lake, Argentina. European Journal of Wildlife Research 51, 113. https://doi.org/10.1007/s10344-005-0078-zCrossRefGoogle Scholar
Romano, M.C., Barberis, I.M., Pagano, F. and Romig, J. (2006). Flamingo winter abundance in Laguna Melincué, Argentina. Flamingo 14, 17.Google Scholar
Romano, M.C., Barberis, I.M., Pagano, F., Marconi, P.M. and Arengo, F. (2008). Winter monitoring of Andean and Chilean Flamingos in lowland wetlands of central Argentina. Flamingo 16, 4547.Google Scholar
Romano, M.C., Barberis, I.M., Pagano, F., Minotti, P. and Arengo, F. (2017). Variaciones anuales en la abundancia y en la distribución espacial del flamenco austral (Phoenicopterus chilensis) y la parina grande (Phoenicoparrus andinus) en el Sitio Ramsar Laguna Melincué, Argentina. El Hornero 32, 215225. https://doi.org/10.56178/eh.v32i2.508CrossRefGoogle Scholar
Rushing, C.S., Hostetler, J.A., Sillett, T.S., Marra, P.P., Rotenberg, J.A. and Ryder, T.B. (2017). Spatial and temporal drivers of avian population dynamics across the annual cycle. Ecology 98, 28372850. https://doi.org/10.1002/ecy.1967CrossRefGoogle ScholarPubMed
Saracco, J.F., Cormier, R.L., Humple, D.L., Stock, S., Taylor, R. and Siegel, R.B. (2022). Demographic responses to climate‐driven variation in habitat quality across the annual cycle of a migratory bird species. Ecology and Evolution 12, e8934. https://doi.org/10.1002/ece3.8934CrossRefGoogle ScholarPubMed
Sosa, H. and Martín, S. (2010). Primer registro de parina grande (Phoenicoparrus andinus) nidificando en Laguna Llancanelo, Mendoza, Argentina. Nótulas Faunísticas 42, 13.Google Scholar
Sticco, M., Guerra, G., Kwaterka, V. and Valdés, S. (2021). Impactos Ambientales de la Explotación de Litio en los Humedales y Recursos Hídricos del Altiplano. Fundación para la Conservación y el Uso Sustentable de los Humedales/Wetlands International.Google Scholar
Stirnemann, R.L., O’Halloran, J., Ridgway, M. and Donnelly, A. (2012). Temperature-related increases in grass growth and greater competition for food drive earlier migrational departure of wintering Whooper Swans. Ibis 154, 542553. https://doi.org/10.1111/j.1474-919X.2012.01230.xCrossRefGoogle Scholar
Tapia, J., Murray, J., Ormachea-Muñoz, M. and Bhattacharya, P. (2022). The unique Altiplano-Puna Plateau: environmental perspectives. Journal of South American Earth Sciences 115, 103725. https://doi.org/10.1016/j.jsames.2022.103725CrossRefGoogle Scholar
Tobar, C., Rau, J.R., Iriarte, A., Villalobos, R., Lagos, N., Cursach, J. et al. (2012). Composition, diversity and size of diatoms consumed by the Andean Flamingo (Phoenicoparrus andinus) in salar de Punta Negra, Antofagasta Region, northern Chile. Ornitología Neotropical 23, 243250.Google Scholar
Torres, R., Marconi, P., Castro, L.B., Moschione, F., Bruno, G., Michelutti, L. et al. (2019). New nesting sites of the threatened Andean flamingo in Argentina. Flamingo e2, 310.Google Scholar
Ugarte-Núñez, J.A. and Mosaurieta-Echegaray, L. (2000). Assessment of threats to flamingos at the Salinas and Aguada Blanca national nature reserve (Arequipa, Peru). Waterbirds 23, 134140. https://doi.org/10.2307/1522158CrossRefGoogle Scholar
Unterkofler, D.A. and Blanco, D.E. (2016). El Censo Neotropical de Aves Acuáticas 2015. Una Herramienta para la Conservación. Buenos Aires: Wetlands International.Google Scholar
Valqui, M., Caziani, S.M., Rocha, O. and Rodríguez, R.E. (2000). Abundance and distribution of the South American altiplano flamingos. Waterbirds 23(Special Publication 1), 110113. https://doi.org/10.2307/1522154CrossRefGoogle Scholar
Vides-Almonacid, R. (1990). Observaciones sobre la utilización del hábitat y la diversidad de especies de aves en una laguna de la Puna Argentina. El Hornero 13, 117128. https://doi.org/10.56178/eh.v13i2.1094CrossRefGoogle Scholar
Zubieta, R., Molina-Carpio, J., Laqui, W., Sulca, J. and Ilbay, M. (2021). Comparative analysis of climate change impacts on meteorological, hydrological, and agricultural droughts in the Lake Titicaca Basin. Water 13, 175. https://doi.org/10.3390/w13020175CrossRefGoogle Scholar
Supplementary material: File

Derlindati et al. supplementary material

Derlindati et al. supplementary material
Download Derlindati et al. supplementary material(File)
File 36.6 KB