Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T20:04:58.756Z Has data issue: false hasContentIssue false

Second-language proficiency modulates the brain language control network in bilingual translators: an event-related fMRI study

Published online by Cambridge University Press:  20 February 2019

Michael Mouthon*
Affiliation:
Neurology Unit, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Switzerland
Asaid Khateb
Affiliation:
Edmond J. Safra Brain Research Center for the Study of Learning Disabilities and Dept of Learning Disabilities, Faculty of Education, University of Haifa, Israel
François Lazeyras
Affiliation:
Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
Alan J. Pegna
Affiliation:
Faculty of Psychology and Educational Science, University of Geneva, CH-1211Geneva 4, Switzerland and School of Psychology, The University of Queensland, Brisbane, Qld, 4072Australia
Hannelore Lee-Jahnke
Affiliation:
Faculty of Translation and Interpretation, University of Geneva, Switzerland
Caroline Lehr
Affiliation:
Faculty of Translation and Interpretation, University of Geneva, Switzerland
Jean-Marie Annoni
Affiliation:
Neurology Unit, Medicine Section, Faculty of Science and Medicine, University of Fribourg, Switzerland
*
Address for correspondence: Dr Michael Mouthon, Email: [email protected]

Abstract

In bilinguals, language proficiency has been advanced to influence the involvement of domain-general control networks in language selection. We assessed, in university student translators with moderate- to high-second language (L2) proficiency depending on their translation educational level, the functional activity in the key language and control areas (the caudate nucleus, anterior cingulate, and prefrontal cortex), during task- and language-selection in an oral production context. We found that L2 proficiency influenced the relative involvement of our regions of interest during language selection vs domain-general cognitive control processes. While the left middle frontal and left caudate areas were more involved during linguistic than alphanumeric task selection in the low L2 proficiency group, these regions were similarly involved in both tasks in the high-L2 proficiency group. These findings suggest that language selection relies primarily on a network within domain-general cognitive control system with an increase in resource needs when L2 proficiency is low.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abutalebi, J (2008) Neural aspects of second language representation and language control. Acta psychologica 128(3), 466478.CrossRefGoogle ScholarPubMed
Abutalebi, J, Annoni, JM, Zimine, I, Pegna, AJ, Seghier, ML, Lee-Jahnke, H, Lazeyras, F, Cappa, SF and Khateb, A (2008a) Language control and lexical competition in bilinguals: an event-related FMRI study. Cerebal Cortex 18(7), 14961505.CrossRefGoogle Scholar
Abutalebi, J, Brambati, SM, Annoni, JM, Moro, A, Cappa, SF and Perani, D (2007a) The neural cost of the auditory perception of language switches: an event-related functional magnetic resonance imaging study in bilinguals. The Journal of neuroscience 27(50), 1376213769.CrossRefGoogle Scholar
Abutalebi, J, Della Rosa, PA, Ding, G, Weekes, B, Costa, A and Green, DW (2013) Language proficiency modulates the engagement of cognitive control areas in multilinguals. Cortex 49(3), 905911.CrossRefGoogle ScholarPubMed
Abutalebi, J and Green, D (2007b) Bilingual language production: The neurocognition of language representation and control. Journal of neurolinguistics 20(3), 242275.CrossRefGoogle Scholar
Abutalebi, J and Green, DW (2008b) Control mechanisms in bilingual language production: Neural evidence from language switching studies. Language and cognitive processes 23(4), 557582.CrossRefGoogle Scholar
Abutalebi, J and Green, DW (2016) Neuroimaging of language control in bilinguals: neural adaptation and reserve. Bilingualism: Language and Cognition 19(4), 689698.CrossRefGoogle Scholar
Abutalebi, J, Keim, R, Brambati, SM, Tettamanti, M, Cappa, SF, De Bleser, R and Perani, D (2007c) Late acquisition of literacy in a native language. Human brain mapping 28(1), 1933.CrossRefGoogle Scholar
Abutalebi, J, Miozzo, A and Cappa, SF (2000) Do subcortical structures control language selection in bilinguals? Evidence from pathological language mixing. Neurocase 6, 101106.Google Scholar
Aglioti, S, Beltramello, A, Girardi, F and Fabbro, F (1996) Neurolinguistic and follow-up study of an unusual pattern of recovery from bilingual subcortical aphasia. Brain 119 (Pt 5), 15511564.CrossRefGoogle ScholarPubMed
Aglioti, S and Fabbro, F (1993) Paradoxical selective recovery in a bilingual aphasic following subcortical lesions. Neuroreport 4(12), 13591362.CrossRefGoogle Scholar
Alario, FX and Ferrand, L (1999) A set of 400 pictures standardized for French: norms for name agreement, image agreement, familiarity, visual complexity, image variability, and age of acquisition. Behavior research methods, instruments, and computers 31(3), 531552.CrossRefGoogle ScholarPubMed
Albert, J, Lopez-Martin, S, Tapia, M, Montoya, D and Carretie, L (2012) The role of the anterior cingulate cortex in emotional response inhibition. Human brain mapping 33(9), 21472160.CrossRefGoogle ScholarPubMed
Albert, ML and Obler, LK (1978) The bilingual brain. New York: Academic Press.Google Scholar
Ali, NN, Green, DW, Kherif, F, Devlin, JT and Price, CJ (2009) The Role of the Left Head of Caudate in Suppressing Irrelevant Words. Journal of cognitive neuroscience 22(10), 23692386.CrossRefGoogle Scholar
Andersson, JL, Hutton, C, Ashburner, J, Turner, R and Friston, K (2001) Modeling geometric deformations in EPI time series. NeuroImage 13(5), 903919.CrossRefGoogle ScholarPubMed
Ansaldo, AI, Ghazi-Saidi, L and Adrover-Roig, D (2015) Interference Control In Elderly Bilinguals: Appearances Can Be Misleading. Journal of clinical and experimental neuropsychology 37(5), 455470.CrossRefGoogle ScholarPubMed
Badre, D, Poldrack, RA, Pare-Blagoev, EJ, Insler, RZ and Wagner, AD (2005) Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron 47(6), 907918.CrossRefGoogle ScholarPubMed
Badre, D and Wagner, AD (2004) Selection, integration, and conflict monitoring; assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron 41(3), 473487.CrossRefGoogle ScholarPubMed
Barch, DM, Braver, TS, Akbudak, E, Conturo, T, Ollinger, J and Snyder, A (2001) Anterior cingulate cortex and response conflict: effects of response modality and processing domain. Cerebal Cortex 11(9), 837848.CrossRefGoogle ScholarPubMed
Bialystok, E, Craik, F and Luk, G (2008) Cognitive control and lexical access in younger and older bilinguals. Journal of experimental psychology 34(4), 859873.Google ScholarPubMed
Bialystok, E, Martin, MM and Viswanathan, M (2005) Bilingualism across the lifespan: The rise and fall of inhibitory control. The international journal of bilingualism 9(1), 103119.CrossRefGoogle Scholar
Bice, K and Kroll, JF (2015) Native language change during early stages of second language learning. Neuroreport 26(16), 966971.CrossRefGoogle ScholarPubMed
Birn, RM, Cox, RW and Bandettini, PA (2004) Experimental designs and processing strategies for fMRI studies involving overt verbal responses. NeuroImage 23(3), 10461058.CrossRefGoogle ScholarPubMed
Blanco-Elorrieta, E and Pylkkanen, L (2015) Brain bases of language selection: MEG evidence from Arabic-English bilingual language production. Frontiers in human neuroscience 9, 27.CrossRefGoogle ScholarPubMed
Blanco-Elorrieta, E and Pylkkanen, L (2016) Bilingual Language Control in Perception versus Action: MEG Reveals Comprehension Control Mechanisms in Anterior Cingulate Cortex and Domain-General Control of Production in Dorsolateral Prefrontal Cortex. The Journal of neuroscience 36(2), 290301.CrossRefGoogle ScholarPubMed
Borrell Fontelles, J and Enestam, J.-E (2006) Recommandation du parlement européen et du conseil du 18 décembre 2006 sur les compétences clés pour l'éducation et la formation tout au long de la vie (2006/962/CE). Journal officiel de l'Union européenne, L 394/10.Google Scholar
Branzi, FM, Della Rosa, PA, Canini, M, Costa, A and Abutalebi, J (2016) Language Control in Bilinguals: Monitoring and Response Selection. Cerebal Cortex 26(6), 23672380.CrossRefGoogle ScholarPubMed
Brass, M, Ullsperger, M, Knoesche, TR, von Cramon, DY and Phillips, NA (2005) Who comes first? The role of the prefrontal and parietal cortex in cognitive control. Journal of cognitive neuroscience 17(9), 13671375.CrossRefGoogle ScholarPubMed
Braver, TS, Barch, DM, Gray, JR, Molfese, DL and Snyder, A (2001) Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cerebal Cortex 11(9), 825836.CrossRefGoogle ScholarPubMed
Calabria, M, Hernandez, M, Branzi, FM and Costa, A (2011) Qualitative Differences between Bilingual Language Control and Executive Control: Evidence from Task-Switching. Frontiers in psychology 2, 399.Google ScholarPubMed
Caramazza, A, Costa, A, Miozzo, M and Bi, Y (2001) The specific-word frequency effect: implications for the representation of homophones in speech production. Journal of experimental psychology 27(6), 14301450.Google ScholarPubMed
Carter, CS, Braver, TS, Barch, DM, Botvinick, MM, Noll, D and Cohen, JD (1998) Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280(5364), 747749.CrossRefGoogle Scholar
Carter, CS, Macdonald, AM, Botvinick, M, Ross, LL, Stenger, VA, Noll, D and Cohen, JD (2000) Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America 97(4), 19441948.CrossRefGoogle ScholarPubMed
Carter, CS and van Veen, V (2007) Anterior cingulate cortex and conflict detection: an update of theory and data. Cognitive, affective & behavioral neuroscience 7(4), 367379.CrossRefGoogle ScholarPubMed
Chavan, CF, Mouthon, M, Draganski, B, van der Zwaag, W and Spierer, L (2015) Differential patterns of functional and structural plasticity within and between inferior frontal gyri support training-induced improvements in inhibitory control proficiency. Human brain mapping 36(7), 25272543.CrossRefGoogle ScholarPubMed
Consonni, M, Cafiero, R, Marin, D, Tettamanti, M, Iadanza, A, Fabbro, F and Perani, D (2013) Neural convergence for language comprehension and grammatical class production in highly proficient bilinguals is independent of age of acquisition. Cortex 49(5), 12521258.CrossRefGoogle ScholarPubMed
Costa, A, Hernandez, M, Costa-Faidella, J and Sebastian-Galles, N (2009) On the bilingual advantage in conflict processing: now you see it, now you don't. Cognition 113(2), 135149.CrossRefGoogle ScholarPubMed
Costa, A, Hernandez, M and Sebastian-Galles, N (2008) Bilingualism aids conflict resolution: evidence from the ANT task. Cognition 106(1), 5986.CrossRefGoogle ScholarPubMed
Costa, A and Santesteban, M (2004) Lexical access in bilingual speech production: Evidence from language switching in highly proficient bilinguals and L2 learners. Journal of memory and language 50(4), 491511.CrossRefGoogle Scholar
Council of Europe (2010) Common European Framework of Reference for Languages: learning, teaching, assessment. Strasbourg: Cambridge University Press.Google Scholar
Crinion, J, Turner, R, Grogan, A, Hanakawa, T, Noppeney, U, Devlin, JT, Aso, T, Urayama, S, Fukuyama, H, Stockton, K, Usui, K, Green, DW and Price, CJ (2006) Language control in the bilingual brain. Science 312(5779), 15371540.CrossRefGoogle ScholarPubMed
Cycowicz, YM, Friedman, D, Rothstein, M and Snodgrass, JG (1997) Picture naming by young children: norms for name agreement, familiarity, and visual complexity. Journal of experimental child psychology 65(2), 171237.CrossRefGoogle ScholarPubMed
Dagher, A, Owen, AM, Boecker, H and Brooks, DJ (1999) Mapping the network for planning: a correlational PET activation study with the Tower of London task. Brain 122 (Pt 10), 19731987.CrossRefGoogle Scholar
Elmer, S (2016) Broca Pars Triangularis Constitutes a “Hub” of the Language-Control Network during Simultaneous Language Translation. Frontiers in human neuroscience 10, 491.CrossRefGoogle ScholarPubMed
Elmer, S, Hanggi, J and Jancke, L (2014) Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters. Cortex 54, 179189.CrossRefGoogle ScholarPubMed
Elmer, S, Hanggi, J, Meyer, M and Jancke, L (2011) Differential language expertise related to white matter architecture in regions subserving sensory-motor coupling, articulation, and interhemispheric transfer. Human brain mapping 32(12), 20642074.CrossRefGoogle ScholarPubMed
Fabbro, F (2001) The bilingual brain: cerebral representation of languages. Brain and language 79(2), 211222.CrossRefGoogle ScholarPubMed
Fabbro, F, Skrap, M and Aglioti, S (2000) Pathological switching between languages after frontal lesions in a bilingual patient. Journal of neurology, neurosurgery, and psychiatry 68(5), 650652.CrossRefGoogle Scholar
Fan, J, Flombaum, JI, McCandliss, BD, Thomas, KM and Posner, MI (2003) Cognitive and brain consequences of conflict. NeuroImage 18(1), 4257.CrossRefGoogle ScholarPubMed
Flores, LC and Disterhoft, JF (2009) Caudate nucleus is critically involved in trace eyeblink conditioning. The Journal of neuroscience 29(46), 1451114520.CrossRefGoogle ScholarPubMed
Friederici, AD (2006) What's in control of language? Nature neuroscience 9(8), 991992.CrossRefGoogle ScholarPubMed
Friesen, DC, Chung-Fat-Yim, A and Bialystok, E (2015) Lexical selection differences between monolingual and bilingual listeners. Brain and language 152, 113.CrossRefGoogle ScholarPubMed
Friston, KJ, Ashburner, J, Kiebel, SJ, Nichols, TE and Penny, WD (2007) Statistical parametric mapping: The analysis of functional brain images. London: Academic Press.CrossRefGoogle Scholar
Friston, KJ, Holmes, AP, Price, CJ, Buchel, C and Worsley, KJ (1999) Multisubject fMRI studies and conjunction analyses. NeuroImage 10(4), 385396.CrossRefGoogle ScholarPubMed
Friston, KJ, Holmes, AP, Worsley, KJ, Poline, JB, Frith, CD and Frackowiak, RS (1995) Statistical parametric maps in functional imaging: A general linear approach. Human brain mapping 3, 189210.Google Scholar
Gerfo, EL, Oliveri, M, Torriero, S, Salerno, S, Koch, G and Caltagirone, C (2008) The influence of rTMS over prefrontal and motor areas in a morphological task: grammatical vs. semantic effects. Neuropsychologia 46(2), 764770.CrossRefGoogle Scholar
Ghazi Saidi, L, Perlbarg, V, Marrelec, G, Pelegrini-Issac, M, Benali, H and Ansaldo, AI (2013) Functional connectivity changes in second language vocabulary learning. Brain and language 124(1), 5665.CrossRefGoogle ScholarPubMed
Gil Robles, S, Gatignol, P, Capelle, L, Mitchell, MC and Duffau, H (2005) The role of dominant striatum in language: a study using intraoperative electrical stimulations. Journal of neurology, neurosurgery, and psychiatry 76(7), 940946.CrossRefGoogle ScholarPubMed
Gilbert, SJ, Spengler, S, Simons, JS, Steele, JD, Lawrie, SM, Frith, CD and Burgess, PW (2006) Functional specialization within rostral prefrontal cortex (area 10): a meta-analysis. Journal of cognitive neuroscience 18(6), 932948.CrossRefGoogle ScholarPubMed
Goral, M, Naghibolhosseini, M and Conner, PS (2013) Asymmetric inhibitory treatment effects in multilingual aphasia. Cognitive neuropsychology 30(7–8), 564577.CrossRefGoogle ScholarPubMed
Grahn, JA, Parkinson, JA and Owen, AM (2008) The cognitive functions of the caudate nucleus. Progress in neurobiology 86(3), 141155.CrossRefGoogle ScholarPubMed
Gray, T and Kiran, S (2015) The relationship between language control and cognitive control in bilingual aphasia. Bilingualism (Cambridge, England) 19(3), 433452.Google Scholar
Green, D (2003) The neural basis of the lexicon and the grammar in L2 acquisition: The convergence hypothesis. In van Hout, R, Hulk, A, Kuiken, F and Towell, R (eds), The Lexicon-Syntax Interface in Secound Language Acquisition. Amsterdam: John Benjamins.Google Scholar
Green, DW (1998) Mental control of the bilingual lexico-semantic system. Bilingualism (Cambridge, England) 1, 6781.Google Scholar
Green, DW and Abutalebi, J (2013) Language control in bilinguals: The adaptive control hypothesis. Journal of cognitive psychology 25(5), 515530.CrossRefGoogle ScholarPubMed
Green, DW, Crinion, J and Price, CJ (2006) Convergence, degeneracy and control. Language Learning 56(s1), 99125.CrossRefGoogle ScholarPubMed
Grosjean, F (1985) The bilingual as a competent but specific speaker-hearer. Journal of Multilingual and Multicultural Devlopment 6, 467477.CrossRefGoogle Scholar
Grosjean, F (1998) Studying bilinguals: Methodological and conceptual issues. Bilingualism (Cambridge, England) 1(2), 131149.Google Scholar
Hernandez, AE (2009) Language switching in the bilingual brain: what's next? Brain and language 109(2–3), 133140.CrossRefGoogle ScholarPubMed
Hernandez, AE, Dapretto, M, Mazziotta, J and Bookheimer, S (2001) Language switching and language representation in Spanish-English bilinguals: an fMRI study. NeuroImage 14(2), 510520.CrossRefGoogle Scholar
Hernandez, AE, Martinez, A and Kohnert, K (2000) In search of the language switch: An fMRI study of picture naming in Spanish-English bilinguals. Brain and language 73(3), 421431.CrossRefGoogle ScholarPubMed
Hervais-Adelman, A, Moser-Mercer, B and Golestani, N (2015) Brain functional plasticity associated with the emergence of expertise in extreme language control. NeuroImage 114, 264274.CrossRefGoogle ScholarPubMed
Holtzheimer, P, Fawaz, W, Wilson, C and Avery, D (2005) Repetitive transcranial magnetic stimulation may induce language switching in bilingual patients. Brain and language 94(3), 274277.CrossRefGoogle ScholarPubMed
Jezzard, P and Clare, S (1999) Sources of distortion in functional MRI data. Human brain mapping 8(2–3), 8085.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Johnson, JA, Strafella, AP and Zatorre, RJ (2007) The role of the dorsolateral prefrontal cortex in bimodal divided attention: two transcranial magnetic stimulation studies. Journal of cognitive neuroscience 19(6), 907920.CrossRefGoogle ScholarPubMed
Katz, R, De Sanctis, P, Mahoney, JR, Sehatpour, P, Murphy, CF, Gomez-Ramirez, M, Alexopoulos, GS and Foxe, JJ (2010) Cognitive control in late-life depression: response inhibition deficits and dysfunction of the anterior cingulate cortex. The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry 18(11), 10171025.CrossRefGoogle ScholarPubMed
Kerns, JG, Cohen, JD, MacDonald, AW, Cho, RY, Stenger, VA and Carter, CS (2004) Anterior cingulate conflict monitoring and adjustments in control. Science 303(5660), 10231026.CrossRefGoogle ScholarPubMed
Khateb, A, Abutalebi, J, Michel, CM, Pegna, AJ, Lee-Jahnke, H and Annoni, JM (2007) Language selection in bilinguals: a spatio-temporal analysis of electric brain activity. International journal of psychophysiology 65(3), 201213.CrossRefGoogle ScholarPubMed
Khateb, A, Pegna, AJ, Michel, CM, Mouthon, M and Annoni, JM (2016) Semantic relatedness and first-second language effects in the bilingual brain: a brain mapping study. Bilingualism: Language and Cognition 19(2), 311330.CrossRefGoogle Scholar
Kostopoulos, P and Petrides, M (2008) Left mid-ventrolateral prefrontal cortex: underlying principles of function. The European journal of neuroscience 27(4), 10371049.CrossRefGoogle ScholarPubMed
Kwong, KK, Belliveau, JW, Chesler, DA, Goldberg, IE, Weisskoff, RM, Poncelet, BP, Kennedy, DN, Hoppel, BE, Cohen, MS, Turner, R, & et al. (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America 89(12), 56755679.CrossRefGoogle ScholarPubMed
Lancaster, JL, Rainey, LH, Summerlin, JL, Freitas, CS, Fox, PT, Evans, AC, Toga, AW and Mazziotta, JC (1997) Automated labeling of the human brain: A preliminary report on the development and evaluation of a foward-transform method. Human brain mapping 5, 238242.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Lancaster, JL, Woldorff, MG, Parsons, LM, Liotti, M, Freitas, CS, Rainey, L, Kochunov, PV, Nickerson, D, Mikiten, SA and Fox, PT (2000) Automated Talairach atlas labels for functional brain mapping. Human brain mapping 10(3), 120131.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Lee-Jahnke, H (2005) New Cognitive Approaches in Process-Oriented Translation Training. Meta: Translators' Journal 50(2), 359377.CrossRefGoogle Scholar
Leemann, B, Laganaro, M, Schwitter, V and Schnider, A (2007) Paradoxical switching to a barely-mastered second language by an aphasic patient. Neurocase 13(3), 209213.CrossRefGoogle ScholarPubMed
Lehtonen, MH, Laine, M, Niemi, J, Thomsen, T, Vorobyev, VA and Hugdahl, K (2005) Brain correlates of sentence translation in Finnish-Norwegian bilinguals. Neuroreport 16(6), 607610.CrossRefGoogle ScholarPubMed
Lepsien, J and Pollmann, S (2002) Covert reorienting and inhibition of return: an event-related fMRI study. Journal of cognitive neuroscience 14(2), 127144.CrossRefGoogle Scholar
Lucas, TH, McKhann, GM and Ojemann, GA (2004) Functional separation of languages in the bilingual brain: a comparison of electrical stimulation language mapping in 25 bilingual patients and 117 monolingual control patients. Journal of neurosurgery 101(3), 449457.CrossRefGoogle ScholarPubMed
MacDonald, AW, Cohen, JD, Stenger, VA and Carter, CS (2000) Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288(5472), 18351838.CrossRefGoogle ScholarPubMed
Magezi, DA, Khateb, A, Mouthon, M, Spierer, L and Annoni, JM (2012) Cognitive control of language production in bilinguals involves a partly independent process within the domain-general cognitive control network: evidence from task-switching and electrical brain activity. Brain and language 122(1), 5563.CrossRefGoogle ScholarPubMed
Mainy, N, Jung, J, Baciu, M, Kahane, P, Schoendorff, B, Minotti, L, Hoffmann, D, Bertrand, O and Lachaux, JP (2008) Cortical dynamics of word recognition. Human brain mapping 29(11), 12151230.CrossRefGoogle ScholarPubMed
Maldjian, JA, Laurienti, PJ, Kraft, RA and Burdette, JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 19(3), 12331239.CrossRefGoogle ScholarPubMed
Marcus, DS, Wang, TH, Parker, J, Csernansky, JG, Morris, JC and Buckner, RL (2007) Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of cognitive neuroscience 19(9), 14981507.CrossRefGoogle ScholarPubMed
Marien, P, Abutalebi, J, Engelborghs, S and De Deyn, PP (2005) Pathophysiology of language switching and mixing in an early bilingual child with subcortical aphasia. Neurocase 11(6), 385398.CrossRefGoogle Scholar
Maril, A, Wagner, AD and Schacter, DL (2001) On the tip of the tongue: an event-related fMRI study of semantic retrieval failure and cognitive conflict. Neuron 31(4), 653660.CrossRefGoogle ScholarPubMed
Meuter, RF and Allport, A (1999) Bilingual language switching in naming: Asymmetrical costs of language selection. Journal of memory and language 40, 2540.CrossRefGoogle Scholar
Miller, EK (2000) The prefrontal cortex and cognitive control. Nature reviews. Neuroscience 1(1), 5965.CrossRefGoogle ScholarPubMed
Moretti, R, Bava, A, Torre, P, Antonello, RM, Zorzon, M, Zivadinov, R and Cazzato, G (2001) Bilingual aphasia and subcortical-cortical lesions. Perceptual and motor skills 92(3 Pt 1), 803814.CrossRefGoogle ScholarPubMed
Mousikou, P and Rastle, K (2015) Lexical frequency effects on articulation: a comparison of picture naming and reading aloud. Frontiers in psychology 6, 1571.CrossRefGoogle ScholarPubMed
Mouthon, M, Annoni, JM and Khateb, A (2013) The bilingual brain. Swiss archives of neurology and psychiatry 164(8), 266273.Google Scholar
Nebel, K, Wiese, H, Stude, P, de Greiff, A, Diener, HC and Keidel, M (2005) On the neural basis of focused and divided attention. Brain research. Cognitive brain research 25(3), 760776.CrossRefGoogle ScholarPubMed
Ojemann, GA (1983) Brain organization for language from the perspective of electrical stimulation mapping. The Behavioral and brain sciences 2, 189230.CrossRefGoogle Scholar
Ojemann, GA and Whitaker, HA (1978) The bilingual brain. Archives of neurology 35(7), 409412.CrossRefGoogle ScholarPubMed
Oldfield, RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1), 97113.CrossRefGoogle ScholarPubMed
Owen, AM, Doyon, J, Petrides, M and Evans, AC (1996) Planning and spatial working memory: a positron emission tomography study in humans. The European journal of neuroscience 8(2), 353364.CrossRefGoogle ScholarPubMed
Paap, KR and Greenberg, ZI (2013) There is no coherent evidence for a bilingual advantage in executive processing. Cognitive psychology 66(2), 232258.CrossRefGoogle ScholarPubMed
Packard, MG and Knowlton, BJ (2002) Learning and memory functions of the Basal Ganglia. Annual review of neuroscience 25, 563593.CrossRefGoogle ScholarPubMed
Paradis, M (1977) Bilingualism and aphasia. In Whitaker, H and Whitaker, H (eds), Studies in Neurolinguistics (Vol. 3,). New York: Accademic Press, pp. 65121.CrossRefGoogle Scholar
Paradis, M (1983) Readings on Aphasia in Bilinguals and Polyglots. Montreal: Marcel Didier.Google Scholar
Paradis, M (1995) Aspects of Bilingual Aphasia. Oxford: Pergamon Press.Google Scholar
Perani, D and Abutalebi, J (2005) The neural basis of first and second language processing. Current opinion in neurobiology 15(2), 202206.CrossRefGoogle ScholarPubMed
Petrides, M (1998) Specialised systems for the processing of mnemonic information within the primae frontal cortex. In Roberts, AC, Robbins, TW and Weiskrantz, L (eds), The prefrontal cortex-executive and cognitive functions. Oxford: Oxford University Press.Google Scholar
Price, CJ (2010) The anatomy of language: a review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences 1191(1), 6288.CrossRefGoogle ScholarPubMed
Price, CJ, Green, DW and von Studnitz, R (1999) A functional imaging study of translation and language switching. Brain 122 (Pt 12), 22212235.CrossRefGoogle ScholarPubMed
Radman, N, Spierer, L, Laganaro, M, Annoni, JM and Colombo, F (2016) Language specificity of lexical-phonological therapy in bilingual aphasia: A clinical and electrophysiological study. Neuropsychological rehabilitation 26(4), 532557.CrossRefGoogle ScholarPubMed
Raye, CL, Johnson, MK, Mitchell, KJ, Reeder, JA and Greene, EJ (2002) Neuroimaging a single thought: dorsolateral PFC activity associated with refreshing just-activated information. NeuroImage 15(2), 447453.CrossRefGoogle ScholarPubMed
Reverberi, C, Kuhlen, AK, Seyed-Allaei, S, Greulich, RS, Costa, A, Abutalebi, J and Haynes, JD (2018) The neural basis of free language choice in bilingual speakers: Disentangling language choice and language execution. NeuroImage 177, 108116.CrossRefGoogle ScholarPubMed
Rinne, JO, Tommola, J, Laine, M, Krause, BJ, Schmidt, D, Kaasinen, V, Teras, M, Sipila, H and Sunnari, M (2000) The translating brain: cerebral activation patterns during simultaneous interpreting. Neuroscience letters 294(2), 8588.CrossRefGoogle ScholarPubMed
Rodriguez-Fornells, A, Rotte, M, Heinze, HJ, Nosselt, T and Munte, TF (2002) Brain potential and functional MRI evidence for how to handle two languages with one brain. Nature 415(6875), 10261029.CrossRefGoogle ScholarPubMed
Rodriguez-Fornells, A, van der Lugt, A, Rotte, M, Britti, B, Heinze, HJ and Munte, TF (2005) Second language interferes with word production in fluent bilinguals: brain potential and functional imaging evidence. Journal of cognitive neuroscience 17(3), 422433.CrossRefGoogle ScholarPubMed
Rogers, RD and Monsell, S (1995) Costs of a Predictable Switch Between Simple Cognitive Tasks. Journal of experimental psychology 124(2), 207231.CrossRefGoogle Scholar
Saint-Cyr, JA, Taylor, AE and Nicholson, K (1995) Behavior and the basal ganglia. Advances in neurology 65, 128.Google ScholarPubMed
Schreppel, TJ, Pauli, P, Ellgring, H, Fallgatter, AJ and Herrmann, MJ (2008) The impact of prefrontal cortex for selective attention in a visual working memory task. The International journal of neuroscience 118(12), 16731688.CrossRefGoogle Scholar
Segalowitz, N and Frenkiel-Fishman, S (2005) Attention control and ability level in a complex cognitive skill: attention shifting and second-language proficiency. Memory & cognition 33(4), 644653.CrossRefGoogle Scholar
Seghier, ML, Lazeyras, F, Pegna, AJ, Annoni, JM, Zimine, I, Mayer, E, Michel, CM and Khateb, A (2004) Variability of fMRI activation during a phonological and semantic language task in healthy subjects. Human brain mapping 23(3), 140155.CrossRefGoogle ScholarPubMed
Shenhav, A, Cohen, JD and Botvinick, MM (2016) Dorsal anterior cingulate cortex and the value of control. Nature neuroscience 19(10), 12861291.CrossRefGoogle ScholarPubMed
Silvetti, M, Alexander, W, Verguts, T and Brown, JW (2014) From conflict management to reward-based decision making: actors and critics in primate medial frontal cortex. Neuroscience and biobehavioral reviews 46 Pt 1, 4457.CrossRefGoogle ScholarPubMed
Snodgrass, JG and Vanderwart, M (1980) A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. Journal of experimental psychology. Human learning and memory 6(2), 174215.CrossRefGoogle ScholarPubMed
Sowell, ER, Peterson, BS, Thompson, PM, Welcome, SE, Henkenius, AL and Toga, AW (2003) Mapping cortical change across the human life span. Nature neuroscience 6(3), 309315.CrossRefGoogle ScholarPubMed
Stein, M, Federspiel, A, Koenig, T, Wirth, M, Lehmann, C, Wiest, R, Strik, W, Brandeis, D and Dierks, T (2009) Reduced frontal activation with increasing 2nd language proficiency. Neuropsychologia 47(13), 27122720.CrossRefGoogle ScholarPubMed
Swainson, R, Jackson, SR and Jackson, GM (2006) Using advance information in dynamic cognitive control: an ERP study of task-switching. Brain research 1105(1), 6172.CrossRefGoogle ScholarPubMed
Swick, D and Turken, AU (2002) Dissociation between conflict detection and error monitoring in the human anterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America 99(25), 1635416359.CrossRefGoogle ScholarPubMed
Tzourio-Mazoyer, N, Landeau, B, Papathanassiou, D, Crivello, F, Etard, O, Delcroix, N, Mazoyer, B and Joliot, M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1), 273289.CrossRefGoogle ScholarPubMed
van Heuven, WJ, Schriefers, H, Dijkstra, T and Hagoort, P (2008) Language conflict in the bilingual brain. Cerebal Cortex 18(11), 27062716.CrossRefGoogle ScholarPubMed
van Veen, V and Carter, CS (2005) Separating semantic conflict and response conflict in the Stroop task: a functional MRI study. NeuroImage 27(3), 497504.CrossRefGoogle ScholarPubMed
Verhoef, K, Roelofs, A and Chwilla, DJ (2009) Role of inhibition in language switching: evidence from event-related brain potentials in overt picture naming. Cognition 110(1), 8499.CrossRefGoogle ScholarPubMed
Vigneau, M, Beaucousin, V, Herve, PY, Duffau, H, Crivello, F, Houde, O, Mazoyer, B and Tzourio-Mazoyer, N (2006) Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. NeuroImage 30(4), 14141432.CrossRefGoogle ScholarPubMed
Wagner, AD, Pare-Blagoev, EJ, Clark, J and Poldrack, RA (2001) Recovering meaning: left prefrontal cortex guides controlled semantic retrieval. Neuron 31(2), 329338.CrossRefGoogle ScholarPubMed
Wang, C, Ulbert, I, Schomer, DL, Marinkovic, K and Halgren, E (2005) Responses of human anterior cingulate cortex microdomains to error detection, conflict monitoring, stimulus-response mapping, familiarity, and orienting. The Journal of neuroscience 25(3), 604613.CrossRefGoogle ScholarPubMed
Wang, X, Wang, YY, Jiang, T, Wang, YZ and Wu, CX (2013) Direct evidence of the left caudate's role in bilingual control: an intra-operative electrical stimulation study. Neurocase 19(5), 462469.CrossRefGoogle ScholarPubMed
Wang, Y, Xue, G, Chen, C, Xue, F and Dong, Q (2007) Neural bases of asymmetric language switching in second-language learners: an ER-fMRI study. NeuroImage 35(2), 862870.CrossRefGoogle ScholarPubMed
West, R and Travers, S (2008) Tracking the temporal dynamics of updating cognitive control: an examination of error processing. Cerebal Cortex 18(5), 11121124.CrossRefGoogle ScholarPubMed
Westlye, LT, Walhovd, KB, Dale, AM, Bjornerud, A, Due-Tonnessen, P, Engvig, A, Grydeland, H, Tamnes, CK, Ostby, Y and Fjell, AM (2010) Differentiating maturational and aging-related changes of the cerebral cortex by use of thickness and signal intensity. NeuroImage 52(1), 172185.CrossRefGoogle ScholarPubMed
White, A, Malt, BC and Storms, G (2016) Convergence in the Bilingual Lexicon: A Pre-registered Replication of Previous Studies. Frontiers in psychology 7, 2081.Google ScholarPubMed
White, NM (2009) Some highlights of research on the effects of caudate nucleus lesions over the past 200 years. Behavioural brain research 199(1), 323.CrossRefGoogle ScholarPubMed
Worsley, KJ and Friston, KJ (1995) Analysis of fMRI time-series revisited-again. NeuroImage 2(3), 173181.CrossRefGoogle Scholar
Worth, A and Tourville, J (2014) Exploring neuroanatomical variaon in a large database of manually-labeled human MRI scans SfN2014, Washington, DC.Google Scholar
Zelazo, PD, Frye, D and Rapus, T (1996) An age-related dissociation between knowing rules and using them. Cognitive development 11(1).CrossRefGoogle Scholar