Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T08:18:28.209Z Has data issue: false hasContentIssue false

Robustness of phonolexical representations relates to phonetic flexibility for difficult second language sound contrasts

Published online by Cambridge University Press:  06 September 2018

MIQUEL LLOMPART*
Affiliation:
Ludwig Maximilian University Munich
EVA REINISCH
Affiliation:
Ludwig Maximilian University Munich
*
Address for correspondence: Miquel Llompart, Institute of Phonetics and Speech Processing, Ludwig Maximilian University Munich, Schellingstraße 3, 80799 Munich, Germany. [email protected]

Abstract

Listening to speech entails adapting to vast amounts of variability in the signal. The present study examined the relationship between flexibility for adaptation in a second language (L2) and robustness of L2 phonolexical representations. Phonolexical encoding and phonetic flexibility for German learners of English were assessed by means of a lexical decision task containing nonwords with sound substitutions and a distributional learning task, respectively. Performance was analyzed for an easy (/i/-/ɪ/) and a difficult contrast (/ε/-/æ/, where /æ/ does not exist in German). Results showed that for /i/-/ɪ/ listeners were quite accurate in lexical decision, and distributional learning consistently triggered shifts in categorization. For /ε/-/æ/, lexical decision performance was poor but individual participants’ scores related to performance in distributional learning: the better learners were in their lexical decision, the smaller their categorization shift. This suggests that, for difficult L2 contrasts, rigidity at the phonetic level relates to better lexical performance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This project was funded by a grant from the German Research Foundation (DFG; grant nr. RE 3047/1-1) to the second author. This work is part of the first author's Ph.D. project. Parts of this work were presented at the 23rd Annual Conference on Architectures and Mechanisms for Language Processing, 2017, in Lancaster, UK. We would like to thank Rosa Franzke for her help with testing participants and Christopher Carignan for comments on a previous version of the manuscript.

References

Amengual, M. (2016). The perception of language-specific phonetic categories does not guarantee accurate phonological representations in the lexicon of early bilinguals. Applied Psycholinguistics, 37, 12211251. https://doi.org/10.1017/s0142716415000557Google Scholar
Aoyama, K., Flege, J. E., Guion, S. G., Akahane-Yamada, R., & Yamada, T. (2004). Perceived phonetic dissimilarity and L2 speech learning: The case of Japanese /r/ and English /l/ and /r/. Journal of Phonetics, 32 (2), 233250. https://doi.org/10.1016/s0095-4470(03)00036-6Google Scholar
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67 (1). doi:10.18637/jss.v067.i01Google Scholar
Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59 (4), 390412. doi:10.1016/j.jml.2007.12.005Google Scholar
Bertelson, P., Vroomen, J., & de Gelder, B. (2003). Visual recalibration of auditory speech identification. Psychological Science, 14 (6), 592597. https://doi.org/10.1046/j.0956-7976.2003.psci_1470.xGoogle Scholar
Best, C. T., & Tyler, M. D. (2007). Nonnative and second-language speech perception: Commonalities and complementarities. In Bohn, O.S. & Munro, M. J. (eds.), Language experience in second language speech learning: In honor of James Emil Flege, pp. 1334. Amsterdam: John Benjamins. https://doi.org/10.1075/lllt.17.07besGoogle Scholar
Boersma, P., & Weenink, D. (2010). Praat: doing phonetics by computer. Version 5.4.22, http://www.praat.org/.Google Scholar
Bohn, O. S., & Flege, J. E. (1990). Interlingual identification and the role of foreign language experience in L2 vowel perception. Applied Psycholinguistics, 11 (03), 303328. https://doi.org/10.1017/s0142716400008912Google Scholar
Bohn, O. S., & Flege, J. E. (1992). The production of new and similar vowels by adult German learners of English. Studies in Second Language Acquisition, 14 (02), 131158. https://doi.org/10.1017/s0272263100010792Google Scholar
Bradlow, A. R., & Bent, T. (2008). Perceptual adaptation to non-native speech. Cognition, 106 (2), 707729. https://doi.org/10.1016/j.cognition.2007.04.005Google Scholar
Broersma, M. (2005). Phonetic and lexical processing in a second language. Ph.D. dissertation, Radboud University.Google Scholar
Broersma, M. (2012). Increased lexical activation and reduced competition in second-language listening. Language and Cognitive Processes, 27 (7-8), 12051224. https://doi.org/10.1080/01690965.2012.660170Google Scholar
Bruggeman, L. (2016). Nativeness, dominance, and the flexibility of listening to spoken language. PhD dissertation, Western Sydney University.Google Scholar
Bundgaard-Nielsen, R. L., Best, C. T., & Tyler, M. D. (2011). Vocabulary size is associated with second-language vowel perception performance in adult learners. Studies in Second Language Acquisition, 33 (3), 433461. https://doi.org/10.1017/S0272263111000040Google Scholar
Clayards, M., Tanenhaus, M. K., Aslin, R. N., & Jacobs, R. A. (2008). Perception of speech reflects optimal use of probabilistic speech cues. Cognition, 108 (3), 804809. https://doi.org/10.1016/j.cognition.2008.04.004Google Scholar
Cook, S. V. (2012). Phonological form in L2 lexical access: Friend or foe? Ph.D. dissertation, University of Maryland.Google Scholar
Cook, S. V., & Gor, K. (2015). Lexical access in L2: Representational deficit or processing constraint? The Mental Lexicon, 10 (2), 247270. https://doi.org/10.1075/ml.10.2.04cooGoogle Scholar
Cook, S. V., Pandza, N. B., Lancaster, A. K., & Gor, K. (2016). Fuzzy nonnative phonolexical representations lead to fuzzy form-to-meaning mappings. Frontiers in Psychology, 7, 1345. https://doi.org/10.3389/fpsyg.2016.01345Google Scholar
Cooper, A., Brouwer, S., & Bradlow, A. R. (2015). Interdependent processing and encoding of speech and concurrent background noise. Attention, Perception, & Psychophysics, 77 (4), 13421357. https://doi.org/10.3758/s13414-015-0855-zGoogle Scholar
Cutler, A. (2015). Representation of second language phonology. Applied Psycholinguistics, 36 (01), 115128. doi:10.1017/s0142716414000459Google Scholar
Cutler, A., Weber, A., & Otake, T. (2006). Asymmetric mapping from phonetic to lexical representations in second-language listening. Journal of Phonetics, 34 (2), 269284. doi:10.1016/j.wocn.2005.06.002Google Scholar
Cutler, A., Weber, A., Smits, R., & Cooper, N. (2004). Patterns of English phoneme confusions by native and non-native listeners. The Journal of the Acoustical Society of America, 116 (6), 36683678. doi:10.1121/1.1810292Google Scholar
Darcy, I., Daidone, D., & Kojima, C. (2013). Asymmetric lexical access and fuzzy lexical representations in second language learners. The Mental Lexicon, 8 (3), 372420. https://doi.org/10.1075/ml.8.3.06darGoogle Scholar
Darcy, I., Dekydtspotter, L., Sprouse, R. A., Glover, J., Kaden, C., McGuire, M., & Scott, J. H. (2012). Direct mapping of acoustics to phonology: On the lexical encoding of front rounded vowels in L1 English–L2 French acquisition. Second Language Research, 28 (1), 540. https://doi.org/10.1177/0267658311423455Google Scholar
Díaz, B., Baus, C., Escera, C., Costa, A., & Sebastian-Galles, N. (2008). Brain potentials to native phoneme discrimination reveal the origin of individual differences in learning the sounds of a second language. Proceedings of the National Academy of Sciences, 105 (42), 1608316088. doi:10.1073/pnas.0805022105Google Scholar
Díaz, B., Mitterer, H., Broersma, M., Escera, C., & Sebastián-Gallés, N. (2016). Variability in L2 phonemic learning originates from speech-specific capabilities: An MMN study on late bilinguals. Bilingualism: Language and Cognition, 19 (05), 955970. doi:10.1017/s1366728915000450Google Scholar
Díaz, B., Mitterer, H., Broersma, M., & Sebastián-Gallés, N. (2012). Individual differences in late bilinguals’ L2 phonological processes: From acoustic-phonetic analysis to lexical access. Learning and Individual Differences, 22 (6), 680689. https://doi.org/10.1016/j.lindif.2012.05.005Google Scholar
Drozdova, P., van Hout, R., & Scharenborg, O. (2016). Lexically-guided perceptual learning in non-native listening. Bilingualism: Language and Cognition, 19 (05), 914920. https://doi.org/10.1017/s136672891600002xGoogle Scholar
Eger, N. A., & Reinisch, E. (2017). The role of acoustic cues and listener proficiency in the perception of accent in nonnative sounds. Studies in Second Language Acquisition, 122. doi:10.1017/s0272263117000377Google Scholar
Eger, N. A., & Reinisch, E. (2018). The impact of one's own voice and production skills on word recognition in a second language. Journal of Experimental Psychology: Learning, Memory, and Cognition. doi:10.1037/xlm0000599Google Scholar
Escudero, P., Benders, T., & Wanrooij, K. (2011). Enhanced bimodal distributions facilitate the learning of second language vowels. The Journal of the Acoustical Society of America, 130 (4), EL206–EL212. doi:10.1121/1.3629144Google Scholar
Escudero, P., Hayes-Harb, R., & Mitterer, H. (2008). Novel second-language words and asymmetric lexical access. Journal of Phonetics, 36 (2), 345360. https://doi.org/10.1016/j.wocn.2007.11.002Google Scholar
Flege, J. E. (1995). Second language speech learning: Theory, findings, and problems. In Strange, W. (ed.), Speech perception and linguistic experience: Issues in cross-language research, pp. 233277. Timonium, MD: York Press.Google Scholar
Flege, J. E., Bohn, O. S., & Jang, S. (1997). Effects of experience on non-native speakers’ production and perception of English vowels. Journal of Phonetics, 25 (4), 437470. https://doi.org/10.1006/jpho.1997.0052Google Scholar
Fourakis, M., & Iverson, G. K. (1984). On the “incomplete neutralization” of German final obstruents. Phonetica, 41 (3), 140149. https://doi.org/10.1159/000261720Google Scholar
Gathercole, S. E., Hitch, G. J., Service, E., & Martin, A. J. (1997). Phonological short-term memory and new word learning in children. Developmental Psychology, 33 (6), 966979. https://doi.org/10.1037/0012-1649.33.6.966Google Scholar
Gollan, T. H., Montoya, R. I., Cera, C., & Sandoval, T. C. (2008). More use almost always means a smaller frequency effect: Aging, bilingualism, and the weaker links hypothesis. Journal of Memory and Language, 58 (3), 787814. https://doi.org/10.1016/j.jml.2007.07.001Google Scholar
Goto, H. (1971). Auditory perception by normal Japanese adults of the sounds “L” and “R.” Neuropsychologia, 9 (3), 317323. doi:10.1016/0028-3932(71)90027-3Google Scholar
Hanulikova, A., & Weber, A. (2011). Sink positive: Linguistic experience with th substitutions influences nonnative word recognition. Attention, Perception, & Psychophysics, 74 (3), 613629. doi:10.3758/s13414-011-0259-7Google Scholar
Iverson, P., & Evans, B. G. (2007). English vowel training with different first‐language vowel systems. The Journal of the Acoustical Society of America, 121 (5), 3072–3072. doi:10.1121/1.4781875Google Scholar
Kleinschmidt, D. F., Raizada, R., & Jaeger, T. F. (2015). Supervised and unsupervised learning in phonetic adaptation. In Dale, R., Jennings, C., Maglio, P., Matlock, T., Noelle, D., Warlaumont, A., & Yoshimi, J. (eds.), Proceedings of the 37th Annual Conference of the Cognitive Science Society, pp. 11291134. Austin, TX: Cognitive Science Society.Google Scholar
Koerner, T., & Zhang, Y. (2017). Application of linear mixed-effects models in human neuroscience research: A comparison with Pearson correlation in two auditory electrophysiology studies. Brain Sciences, 7 (12), 26. doi:10.3390/brainsci7030026Google Scholar
Kuhl, P., Williams, K., Lacerda, F., Stevens, K., & Lindblom, B. (1992). Linguistic experience alters phonetic perception in infants by 6 months of age. Science, 255 (5044), 606608. https://doi.org/10.1126/science.1736364Google Scholar
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: Tests in linear mixed effects models. Journal of Statistical Software, 82 (13). doi:10.18637/jss.v082.i13Google Scholar
Ladefoged, P., & Broadbent, D. E. (1957). Information conveyed by vowels. The Journal of the Acoustical Society of America, 29 (1), 98104. https://doi.org/10.1121/1.1908694Google Scholar
Lametti, D. R., Krol, S. A., Shiller, D. M., & Ostry, D. J. (2014). Brief periods of auditory perceptual training can determine the sensory targets of speech motor learning. Psychological Science, 25 (7), 13251336. https://doi.org/10.1177/0956797614529978Google Scholar
Lancaster, A., & Gor, K. (2016). Abstraction of phonological representations in adult nonnative speakers. Proceedings of the Linguistic Society of America, 1, 24, 115 https://doi.org/10.3765/plsa.v1i0.3725Google Scholar
Llompart, M., & Simonet, M. (2018). Unstressed vowel reduction across Majorcan Catalan dialects: Production and spoken word recognition. Language and Speech, 61 (3), 430465. doi:10.1177/0023830917736019Google Scholar
Llompart, M., & Reinisch, E. (2017). Articulatory information helps encode lexical contrasts in a second language. Journal of Experimental Psychology: Human Perception and Performance, 43 (5), 10401056. https://doi.org/10.1037/xhp0000383Google Scholar
Macmillan, N. A., & Creelman, C. D. (2005). Detection theory: A user's guide (2nd ed.). Mahwah, NJ: Erlbaum.Google Scholar
Mitterer, H., & Reinisch, E. (2017). Surface forms trump underlying representations in functional generalisations in speech perception: The case of German devoiced stops. Language, Cognition and Neuroscience, 32, 11331147. https://doi.org/10.1080/23273798.2017.1286361Google Scholar
Munson, C. M. (2011). Perceptual learning in speech reveals pathways of processing. Ph.D. dissertation, University of Iowa.Google Scholar
Navarra, J., Sebastián-Gallés, N., & Soto-Faraco, S. (2005). The perception of second language sounds in early bilinguals: New evidence from an implicit measure. Journal of Experimental Psychology: Human Perception and Performance, 31 (5), 912918. https://doi.org/10.1037/0096-1523.31.5.912Google Scholar
Noguchi, M., & Kam, C. L. H. (2017). The emergence of the allophonic perception of unfamiliar speech sounds: The effects of contextual distribution and phonetic naturalness. Language Learning, 68 (1), 147176. doi:10.1111/lang.12267Google Scholar
Norris, D., McQueen, J. M., & Cutler, A. (2003). Perceptual learning in speech. Cognitive Psychology, 47 (2), 204238. https://doi.org/10.1016/S0010-0285(03)00006-9Google Scholar
Pallier, C. (2002). Computing discriminability and bias with the R software. Available at http://www.pallier.org/pdfs/aprime.pdf.Google Scholar
Pallier, C., Colomé, A., & Sebastián-Gallés, N. (2001). The influence of native-language phonology on lexical access: Exemplar-based versus abstract lexical entries. Psychological Science, 12 (6), 445449. https://doi.org/10.1111/1467-9280.00383Google Scholar
Peirce, J. W. (2007). PsychoPy—psychophysics software in Python. Journal of Neuroscience Methods, 162 (1), 813. https://doi.org/10.1016/j.jneumeth.2006.11.017Google Scholar
Polka, L., & Bohn, O. S. (2003). Asymmetries in vowel perception. Speech Communication, 41 (1), 221231. doi:10.1016/s0167-6393(02)00105-xGoogle Scholar
Polka, L., & Bohn, O. S. (2011). Natural Referent Vowel (NRV) framework: An emerging view of early phonetic development. Journal of Phonetics, 39 (4), 467478. doi:10.1016/j.wocn.2010.08.007Google Scholar
Polka, L., & Werker, J. F. (1994). Developmental changes in perception of nonnative vowel contrasts. Journal of Experimental Psychology: Human Perception and Performance, 20 (2), 421435. doi:10.1037/0096-1523.20.2.421Google Scholar
Port, R., & O'Dell, M. L. (1985). Neutralization of syllable-final voicing in German. Journal of Phonetics, 13 (4), 455471.Google Scholar
Quené, H., & van den Bergh, H. (2008). Examples of mixed-effects modeling with crossed random effects and with binomial data. Journal of Memory and Language, 59 (4), 413425. doi:10.1016/j.jml.2008.02.002Google Scholar
R Core Team (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/.Google Scholar
Raudenbush, S. W., Yang, M.-L., & Yosef, M. (2000). Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation. Journal of Computational and Graphical Statistics, 9 (1), 141157. doi:10.1080/10618600.2000.10474870Google Scholar
Reinisch, E., & Mitterer, H. (2016). Exposure modality, input variability and the categories of perceptual recalibration. Journal of Phonetics, 55, 96108. doi:10.1016/j.wocn.2015.12.004Google Scholar
Reinisch, E., Weber, A., & Mitterer, H. (2013). Listeners retune phoneme categories across languages. Journal of Experimental Psychology: Human Perception and Performance, 39 (1), 7586. https://doi.org/10.1037/a0027979Google Scholar
Samuel, A. G., & Larraza, S. (2015). Does listening to non-native speech impair speech perception? Journal of Memory and Language, 81, 5171. doi:10.1016/j.jml.2015.01.003Google Scholar
Schuhmann, K. S. (2014). Perceptual learning in second language learners. Ph.D. dissertation, State University of New York at Stony Brook.Google Scholar
Sebastián-Gallés, N., Echeverría, S., & Bosch, L. (2005). The influence of initial exposure on lexical representation: Comparing early and simultaneous bilinguals. Journal of Memory and Language, 52 (2), 240255. https://doi.org/10.1016/j.jml.2004.11.001Google Scholar
Sheldon, A., & Strange, W. (1982). The acquisition of /r/ and /l/ by Japanese learners of English: Evidence that speech production can precede speech perception. Applied Psycholinguistics, 3 (03), 243261. https://doi.org/10.1017/s0142716400001417Google Scholar
Sidaras, S. K., Alexander, J. E. D., & Nygaard, L. C. (2009). Perceptual learning of systematic variation in Spanish-accented speech. The Journal of the Acoustical Society of America, 125 (5), 3306. doi:10.1121/1.3101452Google Scholar
Simon, E., Sjerps, M., & Fikkert, P. (2014). Phonological representations in children's native and non-native lexicon. Bilingualism: Language and Cognition, 17 (1), 321. doi:10.1017/S1366728912000764Google Scholar
Sjerps, M. J., & McQueen, J. M. (2010). The bounds on flexibility in speech perception. Journal of Experimental Psychology: Human Perception and Performance, 36 (1), 195211. doi:10.1037/a0016803Google Scholar
Sumner, M., & Samuel, A. G. (2009). The effect of experience on the perception and representation of dialect variants. Journal of Memory and Language, 60 (4), 487501. https://doi.org/10.1016/j.jml.2009.01.001Google Scholar
Trubetzkoy, N. S. (1977). Grundzuege der Phonologie (6th ed.). Goettingen, Germany: Van den Hoeck & Ruprecht.Google Scholar
van Heuven, W. J. B., Mandera, P., Keuleers, E., & Brysbaert, M. (2014). SUBTLEX-UK: A new and improved word frequency database for British English. The Quarterly Journal of Experimental Psychology, 67 (6), 11761190. https://doi.org/10.1080/17470218.2013.850521Google Scholar
Weber, A., & Cutler, A. (2004). Lexical competition in non-native spoken-word recognition. Journal of Memory and Language, 50 (1), 125. https://doi.org/10.1016/s0749-596x(03)00105-0Google Scholar
Weber, A., di Betta, A. M., & McQueen, J. M. (2014). Treack or trit: Adaptation to genuine and arbitrary foreign accents by monolingual and bilingual listeners. Journal of Phonetics, 46, 3451. https://doi.org/10.1016/j.wocn.2014.05.002Google Scholar
Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7 (1), 4963. https://doi.org/10.1016/s0163-6383(84)80022-3Google Scholar
Witteman, M. J., Weber, A., & McQueen, J. M. (2013). Foreign accent strength and listener familiarity with an accent codetermine speed of perceptual adaptation. Attention, Perception, & Psychophysics, 75 (3), 537556. https://doi.org/10.3758/s13414-012-0404-yGoogle Scholar
Zipf, G. K. (1949). Human behavior and the principle of least effort. Cambridge, MA: Addison-Wesley.Google Scholar