Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T03:43:36.501Z Has data issue: false hasContentIssue false

Tests of a dual-system model of speech category learning*

Published online by Cambridge University Press:  17 January 2014

W. TODD MADDOX*
Affiliation:
University of Texas, Austin
BHARATH CHANDRASEKARAN
Affiliation:
University of Texas, Austin
*
W. Todd Maddox, Department of Psychology, University of Texas, 1 University Station, A8000, Austin, TX 78712[email protected]

Abstract

In the visual domain, more than two decades of work has argued for the existence of dual category learning systems. The reflective system uses working memory in an explicit fashion to develop and test rules for classifying. The reflexive system operates by implicitly associating perception with actions that lead to reinforcement. Dual-system models posit that in learning natural categories, learners initially use the reflective system and with practice, transfer control to the reflexive system. The role of reflective and reflexive systems in second language (L2) speech learning has not been systematically examined. In the study reported in this paper, monolingual native speakers of American English were trained to categorize Mandarin tones produced by multiple speakers. Our computational modeling approach demonstrates that learners use reflective and reflexive strategies during tone category learning. Successful learners use speaker-dependent, reflective analysis early in training and reflexive strategies by the end of training. Our results demonstrate that dual-learning systems are operative in L2 speech learning. Critically, learner strategies directly relate to individual differences in successful category learning.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

The two authors contributed equally to the paper. This research was supported by NIMH grants MH077708 and DA032457 to WTM. We thank the Maddox Lab RAs for data collection.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716723.Google Scholar
Alexander, J. A., Wong, P. C. M., & Bradlow, A. R. (2005). Lexical tone perception in musicians and non-musicians. Paper presented at INTERSPEECH-2005.Google Scholar
Arnauld, E., Jeantet, Y., Arsaut, J., & Desmotes-Mainard, J. (1996). Involvement of the caudal striatum in auditory processing: c-fos response to cortical application of picrotoxin and to auditory stimulation. Molecular Brain Research, 41, 2735.CrossRefGoogle ScholarPubMed
Ashby, F. G. (1992). Multivariate probability distributions. In Ashby, F. G. (ed.), Multidimensional models of perception and cognition, pp. 134. Hillsdale, NJ: Erlbaum.Google Scholar
Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105, 442481.Google Scholar
Ashby, F. G., & Ell, S. W. (2001). The neurobiology of human category learning. Trends in Cognitive Sciences, 5, 204210.Google Scholar
Ashby, F. G., & Ennis, J. M. (2006). The role of the basal ganglia in category learning. Psychology of Learning and Motivation, 46, 136.Google Scholar
Ashby, F. G., & Maddox, W. T. (2005). Human category learning. Annual Review of Psychology, 56, 149178.CrossRefGoogle ScholarPubMed
Ashby, F. G., & Maddox, W. T. (2011). Human category learning 2.0. Annals of the New York Academy of Sciences, 1224, 147161.Google Scholar
Ashby, F. B., Maddix, W. T., & Lee, W. W. (1994). On the dangers of averaging across subjects when using multidimensional scaling or the similarity-choice model. Psychological Science, 5, 144151.Google Scholar
Ashby, F. G., & O’Brien, J. B. (2005). Category learning and multiple memory systems. Trends in Cognitive Sciences, 9, 8389.Google Scholar
Ashby, F. G., & Spiering, B. J. (2004). The neurobiology of category learning. Behavioral and Cognitive Neuroscience Reviews, 3, 101113.CrossRefGoogle ScholarPubMed
Ashby, F. G., Maddox, W. T., & Bohil, C. J. (2002). Observational versus feedback training in rule-based and information-integration category learning. Memory & Cognition, 30, 666677.Google Scholar
Best, C. T. (1993). Emergence of language-specific constraints in perception of nonnative speech: A window on early phonological development. Developmental Neurocognition: Speech and Face Processing in the First Year of Life, 69, 289304.Google Scholar
Best, C. T., Morrongiello, B., & Robson, R. (1981). Perceptual equivalence of acoustic cues in speech and nonspeech perception. Perception & Psychophysics, 29, 191211.CrossRefGoogle ScholarPubMed
Best, C. T., & Tyler, M. D. (2007). Nonnative and second-language speech perception: Commonalities and complementarities. In Bohn, O.-S. & Munro, M. J. (eds.), Language experience in second language speech learning: In honor of James Emil Flege. Amsterdam: Benjamins, 1334.CrossRefGoogle Scholar
Bradlow, A. R. (2008). Training non-native language sound patterns. In Hansen Edwards, J. G. & Zampini, M. L. (eds.), Phonology and second language acquisition, pp. 287308. Amsterdam: Benjamins.Google Scholar
Bradlow, A. R., Akahane-Yamada, R., Pisoni, D. B., & Tohkura, Y. (1999). Training Japanese listeners to identify English /r/ and /l/: Long-term retention of learning in perception and production. Perception & Psychophysics, 61, 977985.Google Scholar
Cheour, M., Ceponiene, R., Lehtokoski, A., Luuk, A., Allik, J., Alho, K., & Naatanen, R. (1998). Development of language-specific phoneme representations in the infant brain. Nature Neuroscience, 1, 351353.CrossRefGoogle ScholarPubMed
Cleeremans, A., & Dienes, Z. (2008). Computational models of implicit learning. In Sun, R. (ed.), Cambridge handbook of computational psychology, pp. 396421. Cambridge: Cambridge University Press.Google Scholar
DeCaro, M. S., Carlson, K. D., Thomas, R. D., & Beilock, S. L. (2009). When and how less is more: Reply to Tharp and Pickering. Cognition, 111, 397403.Google Scholar
DeCaro, M. S., Thomas, R. D., & Beilock, S. L. (2008). Individual differences in category learning: Sometimes less working memory capacity is better than more. Cognition, 107, 284294.Google Scholar
DeKeyser, R. (2008). Implicit and explicit learning. In Doughty, C. & Long, M. H. (eds.), The handbook of second language acquisition, 313–348. Oxford: Blackwell.Google Scholar
Diaz, B., Baus, C., Escera, C., Costa, A., & Sebastian-Galles, N. (2008). Brain potentials to native phoneme discrimination reveal the origin of individual differences in learning the sounds of a second language. Proceedings of the National Academy of Sciences of the United States of America, 105, 1608316088.Google Scholar
Diehl, R. L., Lotto, A. J., & Holt, L. L. (2004). Speech perception. Annual Review of Psychology, 55, 149179.CrossRefGoogle ScholarPubMed
Estes, W. K. (1956). The problem of inference from curves based on group data. Psychological Bulletin, 53, 134140.Google Scholar
Evans, J. L., Saffran, J. R., & Robe-Torres, K. (2009). Statistical learning in children with specific language impairment. Journal of Speech Language and Hearing Research, 52, 321335.Google Scholar
Flege, J. E. (1995). Second language speech learning: Theory, findings, and problems. In W. Strange (ed.), Speech perception and linguistic experience: Issues in cross-language research, pp. 233277. Timonium, MD: York Press.Google Scholar
Flege, J. E. (1999). Age of learning and second language speech. In D. Birdsong (ed.), Second language acquisition and the critical period hypothesis, pp. 101131. Mahwah, NJ: Erlbaum.Google Scholar
Francis, A. L., & Nusbaum, H. C. (2002). Selective attention and the acquisition of new phonetic categories. Journal of Experimental Psychology: Human Perception and Performance, 28, 349366.Google ScholarPubMed
Francis, A. L., Ciocca, V., Ma, L., & Fenn, K. (2008). Perceptual learning of Cantonese lexical tones by tone and non-tone language speakers. Journal of Phonetics, 36, 268294.Google Scholar
Gandour, J. (1978). Perceived dimensions of thirteen tones: a multidimensional scaling investigation. Phonetica, 35, 169179.Google Scholar
Gandour, J. (1983). Tone perception in Far Eastern languages. Journal of Phonetics, 11, 149175.CrossRefGoogle Scholar
Gandour, J., & Dardarananda, R. (1983). Identification of tonal contrasts in Thai aphasic patients. Brain & Language, 18, 98114.CrossRefGoogle ScholarPubMed
Gandour, J., Wong, D., & Hutchins, G. (1998). Pitch processing in the human brain is influenced by language experience. Neuroreport, 9, 21152119.CrossRefGoogle ScholarPubMed
Gandour, J., Dzemidzic, M., Wong, D., Lowe, M., Tong, Y., Hsieh, L., Satthamnuwong, N., & Lurito, J. (2003). Temporal integration of speech prosody is shaped by language experience: An fMRI study. Brain and Language, 84, 318336.Google Scholar
Gandour, J., Wong, D., Hsieh, L., Weinzapfel, B., Van Lancker, D., & Hutchins, G. D. (2000). A crosslinguistic PET study of tone perception. Journal of Cognitive Neuroscience, 12, 207222.Google Scholar
Golestani, N., Molko, N., Dehaene, S., LeBihan, D., & Pallier, C. (2007). Brain structure predicts the learning of foreign speech sounds. Cerebral Cortex, 17, 575582.Google Scholar
Goudbeek, M., Cutler, A., & Smits, R. (2008). Supervised and unsupervised learning of multidimensionally varying non-native speech categories. Speech Communication, 50, 109125.Google Scholar
Hattori, K., & Iverson, P. (2009). English /r/–/l/ category assimilation by Japanese adults: Individual differences and the link to identification accuracy. Journal of the Acoustical Soceity of America, 125, 469479.Google Scholar
Hay, J. F., Pelucchi, B., Graf Estes, K., & Saffran, J. R. (2011). Linking sounds to meanings: Infant statistical learning in a natural language. Cognitive Psychology, 63, 93106.Google Scholar
Hernandez, A. E., & Li, P. (2007). Age of acquisition: Its neural and computational mechanisms. Psychological Bulletin, 133, 638650.Google Scholar
Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92, 6799.Google Scholar
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8, 393402.Google Scholar
Hikosaka, O., Sakamoto, Y., & Usui, S. (1989). Functional properties of monkey caudate neruons: III. Activities related to expectation of target and reward. Journal of Neurophysiology, 61, 814832.CrossRefGoogle Scholar
Holt, L. L. (2006). The mean matters: Effects of statistically defined nonspeech spectral distributions on speech categorization. The Journal of the Acoustical Society of America, 120, 28012817.Google Scholar
Holt, L. L., & Lotto, A. J. (2008). Speech perception within an auditory cognitive science framework. Current Directions in Psychological Science, 17, 4246.Google Scholar
Holt, L. L., & Lotto, A. J. (2010). Speech perception as categorization. Attention, Perception & Psychophysics, 72, 12181227.CrossRefGoogle ScholarPubMed
Howie, J. M. (1976). Acoustical studies of Mandarin vowels and tones. Cambridge: Cambridge University Press.Google Scholar
Huang, J., & Holt, L. L. (2012). Listening for the norm: Adaptive coding in speech categorization. Frontiers in Psychology, 3, 10.Google Scholar
Hulstijn, J. H. (2005). Theoretical and empirical issues in the study of implicit and explicit second-language learning. Studies in Second Language Acquisition, 27, 129140.Google Scholar
Hume, E., & Johnson, K. (2001). A model of the interplay of speech perception and phonology. In Hume, E. & Johnson, K. (eds.), The role of speech perception in phonology, pp. 326. San Diego, CA: Academic Press.CrossRefGoogle Scholar
Iverson, P., Kuhl, P. K., Akahane-Yamada, R., Diesch, E., Tohkura, Y., Kettermann, A., & Siebert, C. (2003). A perceptual interference account of acquisition difficulties for non-native phonemes. Cognition, 87, B4757.Google Scholar
Klein, D., Zatorre, R. J., Milner, B., & Zhao, V. (2001). A cross-linguistic PET study of tone perception in Mandarin Chinese and English speakers. Neuroimage, 13, 646653.Google Scholar
Kraljic, T., & Samuel, A. G. (2005). Perceptual learning for speech: Is there a return to normal? Cognitive Psychology, 51, 141178.Google Scholar
Kraljic, T., & Samuel, A. G. (2006). Generalization in perceptual learning for speech. Psychonomic Bulletin and Review, 13, 262268.Google Scholar
Kraljic, T., & Samuel, A. G. (2007). Perceptual adjustments to multiple speakers. Journal of Memory and Language, 56, 115.Google Scholar
Krashen, S. (1982). Principles and practice in second language acquisition. Oxford: Pergamon.Google Scholar
Laing, E. J., Liu, R., Lotto, A. J., & Holt, L. L. (2012). Tuned with a tune: Talker normalization via general auditory processes. Frontiers in psychology, 3, 203.Google Scholar
Lim, S. J., & Holt, L. L. (2011). Learning foreign sounds in an alien world: Videogame training improves non-native speech categorization. Cognitive Science, 35, 13901405.Google Scholar
Lively, S. E., Logan, J. S., & Pisoni, D. B. (1993). Training Japanese listeners to identify English /r/ and /l/. II: The role of phonetic environment and talker variability in learning new perceptual categories. Journal of the Acoustical Society of America, 94, 12421255.Google Scholar
Lively, S. E., Pisoni, D. B., Yamada, R. A., Tohkura, Y., & Yamada, T. (1994). Training Japanese listeners to identify English /r/ and /l/. III: Long-term retention of new phonetic categories. Journal of the Acoustical Society of America, 96, 20762087.CrossRefGoogle Scholar
Lotto, A. J. (2000). Language acquisition as complex category formation. Phonetica, 57, 189196.Google Scholar
Maddox, W. T. (1999). On the dangers of averaging across observers when comparing decision bound models and generalized context models of categorization. Perception & Psychophysics, 61, 354375.Google Scholar
Maddox, W. T., & Ashby, F. G. (2004). Dissociating explicit and procedural-learning based systems of perceptual category learning. Behavioral Processes, 66, 309332.Google Scholar
Maddox, W. T., Ing, A. D., & Lauritzen, J. S. (2006). Stimulus modality interacts with category structure in perceptual category learning. Perception & Psychophysics, 68, 11761190.Google Scholar
Maddox, W. T., Molis, M. R., & Diehl, R. L. (2002). Generalizing a neuropsychological model of visual categorization to auditory categorization of vowels. Perception & Psychophysics, 64, 584597.CrossRefGoogle ScholarPubMed
Maddox, W. T., Love, B. C., Glass, B. D., & Filoteo, J. V. (2008). When more is less: Feedback effects in perceptual category learning. Cognition, 108, 578589.CrossRefGoogle ScholarPubMed
Maddox, W. T., Filoteo, J. V., Lauritzen, J. S., Connally, E., & Hejl, K. D. (2005). Discontinuous categories affect information-integration but not rule-based category learning. Journal of Experimental Psychology: Learning, Memory and Cognition, 31, 654669.Google Scholar
McClelland, J. L., Fiez, J. A., & McCandliss, B. D. (2002). Teaching the /r/–/l/ discrimination to Japanese adults: Behavioral and neural aspects. Physiology & Behavior, 77, 657662.Google Scholar
McClelland, J. L., Mirman, D., & Holt, L. L. (2006). Are there interactive processes in speech perception? Trends in Cognitive Sciences, 10, 363369.Google Scholar
McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419.CrossRefGoogle ScholarPubMed
Mirman, D., McClelland, J. L., & Holt, L. L. (2006). An interactive Hebbian account of lexically guided tuning of speech perception. Psychonomic Bulletin & Review, 13, 958965.Google Scholar
Näätänen, R., Lehtokoski, A., Lennes, M., Cheour, M., Huotilainen, M., Iivonen, A., Vainio, M., Alku, P., Ilmoniemi, R. J., Luuk, A., Allik, J., Sinkkonen, J., & Alho, K. (1997). Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature, 385, 432434.CrossRefGoogle ScholarPubMed
Nomura, E. M., & Reber, P. J. (2008). A review of medial temporal lobe and caudate contributions to visual category learning. Neuroscience and Biobehavioral Reviews, 32, 279291.CrossRefGoogle ScholarPubMed
Nomura, E. M., Maddox, W. T., Filoteo, J. V., Ing, A. D., Gitelman, D. R., Parrish, T. B., Mesulam, M.-M., & Reber, P. J. (2007). Neural correlates of rule-based and information-integration visual category learning. Cerebral Cortex, 17, 3743.Google Scholar
Paradis, M. (1985). On the representation of two languages in one brain. Language Sciences, 7, 139.Google Scholar
Paradis, M. (2004). A neurolinguistic theory of bilingualism. Amsterdam: Benjamins.CrossRefGoogle Scholar
Perrachione, T. K., Lee, J., Ha, L. Y. & Wong, P. C. (2011b). Learning a novel phonological contrast depends on interactions between individual differences and training paradigm design. Journal of the Acoustical Society of America, 130, 461.Google Scholar
Petrides, M., & Pandya, D. N. (1988). Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey. Journal of Comparative Neurology, 273, 5266.Google Scholar
Poldrack, R. A., & Foerde, K. (2008). Category learning and the memory systems debate. Neuroscience and Biobehavioral Reviews, 32, 197205.Google Scholar
Poldrack, R. A., & Packard, M. G. (2003). Competition among multiple memory systems: Converging evidence from animal and human brain studies. Neuropsychologia, 41, 245251.Google Scholar
Poldrack, R. A., Clark, J., Pare-Blagoev, E. J., Shohamy, D., Creso Moyano, J., Myers, C., & Gluck, M. A. (2001). Interactive memory systems in the human brain. Nature, 414, 546550.Google Scholar
Reber, P. J. (2013). The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia, 51, 20262042.Google Scholar
Reber, A. S., Walkenfeld, F. F., & Hernstadt, R. (1991). Implicit and explicit learning: Individual differences and IQ. Journal of Experimental Psychology: Learning, Memory & Cognition, 17, 888896.Google Scholar
Romberg, A. R., & Saffran, J. R. (2010). Statistical learning and language acquisition. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 906914.Google Scholar
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 19261928.Google Scholar
Samuel, A. G., & Kraljic, T. (2009). Perceptual learning for speech. Attention, Perception & Psychophysics, 71, 12071218.Google Scholar
Schmidt, R. (1995). Consciousness and foreign language learning: A tutorial on the role of attention and awareness in learning. In Schmidt, R. (ed.), Attention and awareness in foreign language learning, 163. Honolulu, HI: University of Hawai‘i Press.Google Scholar
Schmidt, R. (2012). Attention, awareness, and individual differences in language learning. Perspectives on Individual Characteristics and Foreign Language Education, 6, 27.Google Scholar
Seger, C. A. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience and Biobehavioral Reviews, 32, 265278.Google Scholar
Seger, C. A. & Cincotta, C. M. (2005). The roles of the caudate nucleus in human classification learning. Journal of Neuroscience, 25, 29412951.Google Scholar
Seger, C. A., & Miller, E. K. (2010). Category learning in the brain. Annual Review of Neuroscience, 33, 203219.Google Scholar
Tagarelli, K., Borges-Mota, M., & Rebuschat, P. (2011). The role of working memory in implicit and explicit language learning. Proceedings of the 33rd Annual Conference of the Cognitive Science Society, pp. 2061–2066. Austin, TX: Cognitive Science Society.Google Scholar
Tricomi, E., Delgado, M. R., McCandliss, B. D., McClelland, J. L., & Fiez, J. A. (2006). Performance feedback drives caudate activation in a phonological learning task. Journal of Cognitive Neuroscience, 18, 10291043.Google Scholar
Ullman, M. T. (2004). Contributions of memory circuits to language: The declarative/procedural model. Cognition, 92, 231270.CrossRefGoogle ScholarPubMed
Ullman, M. T. (2006). The declarative/procedural model and the shallow structure hypothesis. Applied Psycholinguistics, 27, 97105.Google Scholar
Vallabha, G. K., & McClelland, J. L. (2007). Success and failure of new speech category learning in adulthood: Consequences of learned Hebbian attractors in topographic maps. Cognitive, Affective & Behavioral Neuroscience, 7, 5373.Google Scholar
Ventura-Campos, N., Sanjuán, A., González, J., Palomar-García, M.-A., Rodríguez-Pujadas, A., Sebastián-Gallés, N., Deco, G., & Ávila, C. (2013). Spontaneous brain activity predicts learning ability of foreign sounds. Journal of Neuroscience, 33, 92959305.Google Scholar
Wagenmakers, E. J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin & Review, 11, 192196.Google Scholar
Wang, Y., Jongman, A., & Sereno, J. A. (2003). Acoustic and perceptual evaluation of Mandarin tone productions before and after perceptual training. Journal of the Acoustical Society of America, 113, 10331043.CrossRefGoogle ScholarPubMed
Wang, Y., Sereno, J. A., Jongman, A., & Hirsch, J. (2003). fMRI evidence for cortical modification during learning of Mandarin lexical tone. Journal of Cognitive Neuroscience, 15, 10191027.CrossRefGoogle ScholarPubMed
Wechsler, D. (1997). Wechsler Adult Intelligence Scale (3rd edn). San Antonio, TX: Harcourt Brace.Google Scholar
Wickens, T. D. (1982). Models for behavior: Stochastic processes in psychology: San Francisco, CA: W. H. Freeman.Google Scholar
Wilson, C. J. (1995). The contribution of cortical neurons to the firing pattern of striatal spiny neurons. In Houk, J. C., Davis, J. L. & Beiser, D. G. (eds.), Models of information processing in the basal ganglia, pp. 2950. Cambridge, MA: MIT Press.Google Scholar
Wong, F. C., Chandrasekaran, B., Garibaldi, K., & Wong, P. C. (2011). White matter anisotropy in the ventral language pathway predicts sound-to-word learning success. Journal of Neuroscience, 31, 87808785.Google Scholar
Wong, P. C., Nusbaum, H. C., & Small, S. L. (2004a). Neural bases of talker normalization. Journal of Cognitive Neuroscience, 16, 11731184.CrossRefGoogle ScholarPubMed
Wong, P. C., Perrachione, T. K., & Parrish, T. B. (2007). Neural characteristics of successful and less successful speech and word learning in adults. Human Brain Mapping, 28, 9951006.Google Scholar
Xi, J., Zhang, L., Shu, H., Zhang, Y., & Li, P. (2010). Categorical perception of lexical tones in Chinese revealed by mismatch negativity. Neuroscience, 170, 223231.CrossRefGoogle ScholarPubMed
Xu, Y., Gandour, J. T., & Francis, A. L. (2006). Effects of language experience and stimulus complexity on the categorical perception of pitch direction. Journal of the Acoustical Society of America, 120, 10631074.Google Scholar
Yang, J., & Li, P. (2012). Brain networks of explicit and implicit learning. PloS one, 7, e42993.Google Scholar
Yeterian, E. H., & Pandya, D. N. (1998). Corticostriatal connections of the superior temporal region in rhesus monkeys. Journal of Comparative Neurology, 399, 384402.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Zhang, Y., Kuhl, P. K., Imada, T., Iverson, P., Pruitt, J., Stevens, E. B., Kawakatsu, M., Tohkura, Y., & Nemoto, I. (2009). Neural signatures of phonetic learning in adulthood: A magnetoencephalography study. Neuroimage, 46, 226240.CrossRefGoogle ScholarPubMed