Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T09:07:33.021Z Has data issue: false hasContentIssue false

What about the neural basis of crystallized intelligence?

Published online by Cambridge University Press:  26 July 2007

Kun Ho Lee
Affiliation:
School of Biological Sciences, Seoul National University, Seoul 151-742, [email protected]@snu.ac.kr
Yu Yong Choi
Affiliation:
School of Biological Sciences, Seoul National University, Seoul 151-742, [email protected]@snu.ac.kr
Jeremy R. Gray
Affiliation:
Department of Psychology, Yale University, New Haven, CT 05620. [email protected]

Abstract

General intelligence is largely based on two distinguishable mental abilities: crystallized intelligence (gC) and fluid reasoning ability (gF). The target article authors' P-FIT model emphasizes a network of regions throughout the brain as the neural basis for fluid reasoning and/or working memory. However, it provides little significant insight into the neural basis of gC, or how or why gC is more stable than gF across the life span.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashton, M. C., Lee, K. & Vernon, P. A. (2001) Which is the real intelligence? A reply to Robinson (1999). Personality and Individual Differences 30:1353–59.CrossRefGoogle Scholar
Bookstein, F. L. (2001) “Voxel-based morphometry” should not be used with imperfectly registered images. NeuroImage 14(6):1454–62.CrossRefGoogle Scholar
Botwinick, J. (1977) Intellectual abilities. In: Handbook of the psychology of aging, ed. Birren, J. E. & Schaie, K. W., pp. 508605. Nostrand Reinhold.Google Scholar
Brett, M., Johnsrude, I. S. & Owen, A. M. (2002) The problem of functional localization in the human brain. Nature Reviews Neuroscience 3:243–49.CrossRefGoogle ScholarPubMed
Cattell, R. B. (1963) Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology 54:122.CrossRefGoogle Scholar
Cattell, R. B. (1987) Intelligence: Its structure, growth, and action. Elsevier Science.Google Scholar
Chklovskii, D., Mel, B. & Svoboda, K. (2004) Cortical rewiring and information storage. Nature 431:782–88.CrossRefGoogle ScholarPubMed
Colom, R., Jung, R. E. & Haier, R. J. (2006a) Distributed brain sites for the g-factor of intelligence. NeuroImage 31(3):1359–65.CrossRefGoogle ScholarPubMed
Davatzikos, C. (2004) Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. NeuroImage 23(1):1720.CrossRefGoogle ScholarPubMed
Dixon, R. A., Kramer, D. A. & Baltes, P. B. (1985) Intelligence: A life-span developmental perspective. In: Handbook of intelligence: Theories, measurements, and applications, ed. Wolman, B. B., pp. 301–50. Wiley.Google Scholar
Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U. & May, A. (2004) Neuroplasticity: Changes in grey matter induced by training. Nature 427:311–12.CrossRefGoogle ScholarPubMed
Draganski, B., Gaser, C., Kempermann, G., Kuhn, H. G., Winkler, J., Buchel, C. & May, A. (2006) Temporal and spatial dynamics of brain structure changes during extensive learning. Journal of Neuroscience 26(23):6314–17.CrossRefGoogle ScholarPubMed
Duncan, J., Burgess, P. & Emslie, H. (1995) Fluid intelligence after frontal lobe lesions. Neuropsychologia 33(3):261–68.CrossRefGoogle ScholarPubMed
Duncan, J., Emslie, H., Williams, P., Johnson, R. & Freer, C. (1996) Intelligence and the frontal lobe: The organization of goal-directed behavior. Cognitive Psychology 30:257303.CrossRefGoogle ScholarPubMed
Fischl, B. & Dale, A. M. (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences USA 97:11050–55.CrossRefGoogle ScholarPubMed
Frankland, P. W. & Bontempi, B. (2005) The organization of recent and remote memories. Nature Reviews Neuroscience 6:119–30.CrossRefGoogle ScholarPubMed
Gainotti, G. (2006) Anatomical functional and cognitive determinants of semantic memory disorders. Neuroscience and Biobehavioral Reviews 30:577–94.CrossRefGoogle ScholarPubMed
Golestani, N., Paus, T. & Zatorre, R. J. (2002) Anatomical correlates of learning novel speech sounds. Neuron 35:9971010.CrossRefGoogle ScholarPubMed
Gray, J. R. & Thompson, P. M. (2004) Neurobiology of intelligence: Science and ethics. Nature Reviews Neuroscience 5(6):471–82.CrossRefGoogle ScholarPubMed
Hodges, J., Patterson, K., Oxbury, S. & Funnell, E. (1992) Semantic dementia: Progressive fluent aphasia with temporal lobe atrophy. Brain 115:1783–806.CrossRefGoogle ScholarPubMed
Jensen, A. R. (1998) The g factor: The science of mental ability. Praeger.Google Scholar
Kaufman, A. S. & Horn, J. L. (1996) Age changes on test of fluid and crystallized ability for women and men on the Kaufman Adolescent and Adult Intelligence Test (KAIT) at ages 17–94 years. Archives of Clinical Neuropsychology 11:97121.Google ScholarPubMed
Kaufman, A., Kaufman-Packer, J., McLean, J. & Reynolds, C. (1991) Is the pattern of intellectual growth and decline across the adult life span different for men and women? Journal of Clinical Psychology 47:801–12.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Lee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J. H., Lee, S. & Kim, K. (2006) Neural correlates of superior intelligence: Stronger recruitment of posterior parietal cortex. NeuroImage 29(2):578–86.CrossRefGoogle ScholarPubMed
Martin, A. & Chao, L. L. (2001) Semantic memory and the brain: Structure and processes. Current Opinion in Neurobiology 11:194201.CrossRefGoogle ScholarPubMed
Maviel, T., Durkin, T., Menzaghi, F. & Bontempi, B. (2004) Sites of neocortical reorganization critical for remote spatial memory. Science 305:9699.CrossRefGoogle ScholarPubMed
McClelland, J. L. & Rogers, T. T. (2003) The parallel distributed processing approach to semantic cognition. Nature Reviews Neuroscience 4:310–22.CrossRefGoogle ScholarPubMed
Mehta, S., Grabowski, T. J., Trivedi, Y. & Damasio, H. (2003) Evaluation of voxel-based morphometry for focal lesion detection in individuals. NeuroImage 20:1438–54.CrossRefGoogle ScholarPubMed
Miyashita, Y. (2004) Cognitive memory: Cellular and network machineries and their top-down control. Science 306:435–40.CrossRefGoogle ScholarPubMed
Mummery, C., Patterson, K., Wise, R., Vandenbergh, R., Price, C. & Hodges, J. (1999) Disrupted temporal lobe connections in semantic dementia. Brain 122:6173.CrossRefGoogle ScholarPubMed
Robinson, D. L. (1999) The “IQ” factor: Implications for intelligence theory and measurement. Personality and Individual Differences 27:715–35.CrossRefGoogle Scholar
Robinson, D. L. (2005) Additional grounds for proposing that the “verbal” or “Gc” factor is the most valid intelligence factor. Personality and Individual Differences 38:1715–29.CrossRefGoogle Scholar
Sakai, K. & Miyashita, Y. (1991) Neural organization for the long-term memory of paired associates. Nature 354:152–55.CrossRefGoogle ScholarPubMed
Tokuyama, W., Okuno, H., Hashimoto, T., Xin Li, Y. & Miyashita, Y. (2000) BDNF upregulation during declarative memory formation in monkey inferior temporal cortex. Nature Neuroscience 3:1134–42.CrossRefGoogle ScholarPubMed
Waltz, J. A., Knowlton, B. J., Holyoak, K. J., Boone, K. B., Mishkin, F. S., Santos, M., Thomas, C. R. & Miller, B. L. (1999) A system for relation reasoning in the human prefrontal cortex. Psychological Science 10:119–25.CrossRefGoogle Scholar
Westbury, C. F., Zatorre, R. J. & Evans, A. C. (1999) Quantifying variability in the planum temporale: A probability map. Cerebral Cortex 9:392405.CrossRefGoogle ScholarPubMed
Yoshida, M., Naya, Y. & Miyashita, Y. (2003) Anatomical organization of forward fiber projections from area TE to perirhinal neurons representing visual long-term memory in monkeys. Proceedings of the National Academy of Sciences USA 100:4257–62.CrossRefGoogle Scholar