Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T15:51:47.875Z Has data issue: false hasContentIssue false

Visualizing genetic similarity at the symptom level: The example of learning disabilities

Published online by Cambridge University Press:  29 June 2010

Oliver S. P. Davis
Affiliation:
MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom. [email protected]://www.iop.kcl.ac.uk/staff/profile/[email protected]://www.iop.kcl.ac.uk/staff/profile/?go=10628
Robert Plomin
Affiliation:
MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom. [email protected]://www.iop.kcl.ac.uk/staff/profile/[email protected]://www.iop.kcl.ac.uk/staff/profile/?go=10628

Abstract

Psychological traits and disorders are often interrelated through shared genetic influences. A combination of maximum-likelihood structural equation modelling and multidimensional scaling enables us to open a window onto the genetic architecture at the symptom level, rather than at the level of latent genetic factors. We illustrate this approach using a study of cognitive abilities involving over 5,000 pairs of twins.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Davis, O. S. P., Haworth, C. M. A. & Plomin, R. (2009) Learning abilities and disabilities: Generalist genes in early adolescence. Cognitive Neuropsychiatry 14(4):312–31.CrossRefGoogle ScholarPubMed
Gower, J. C. (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53(6):325–28.CrossRefGoogle Scholar
Haworth, C. M. A., Harlaar, N., Kovas, Y., Davis, O. S. P., Oliver, B. R., Hayiou-Thomas, M. E., Frances, J., Busfield, P., McMillan, A., Dale, P. S. & Plomin, R. (2007) Internet cognitive testing of large samples needed in genetic research. Twin Research and Human Genetics 10(4):554–63.CrossRefGoogle ScholarPubMed
Mardia, K. V., Kent, J. T. & Bibby, J. M. (1979) Multivariate analysis. Academic Press.Google Scholar
Neale, M. C., Boker, S. M., Xie, G. & Maes, H. H. (2006) Mx: Statistical modeling, 7th edition. Virginia Commonwealth University.Google Scholar
Oliver, B. R. & Plomin, R. (2007) Twins Early Development Study (TEDS): A multivariate, longitudinal genetic investigation of language, cognition and behavior problems from childhood through adolescence. Twin Research and Human Genetics 10(1):96105.CrossRefGoogle ScholarPubMed
Plomin, R., DeFries, J. C., McClearn, G. E. & McGuffin, P. (2008) Behavioral genetics, 5th ed. Worth.Google Scholar
Plomin, R., Haworth, C. M. A. & Davis, O. S. P. (2009) Common disorders are quantitative traits. Nature Reviews:Genetics 10(12):872–78.CrossRefGoogle ScholarPubMed
Plomin, R. & Kovas, Y. (2005) Generalist genes and learning disabilities. Psychological Bulletin 131(4):592617.CrossRefGoogle ScholarPubMed
R Development Core Team. (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing.Google Scholar
Tufte, E. R. (2001) The visual display of quantitative information, 2nd edition. Graphics Press.Google Scholar
Wellcome Trust Case Control Consortium. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–78.CrossRefGoogle Scholar
Young, G. & Householder, A. S. (1938) Discussion of a set of points in terms of their mutual distances. Psychometrika 3(1):1922.CrossRefGoogle Scholar